scholarly journals Species-Specific Recognition of Sulfolobales Mediated by UV-Inducible Pili and S-Layer Glycosylation Patterns

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Marleen van Wolferen ◽  
Asif Shajahan ◽  
Kristina Heinrich ◽  
Susanne Brenzinger ◽  
Ian M. Black ◽  
...  

ABSTRACT The UV-inducible pili system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA to repair DNA double-strand breaks via homologous recombination. Substitution of the Sulfolobus acidocaldarius pilin subunits UpsA and UpsB with their homologs from Sulfolobus tokodaii showed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance of N-glycosylation in the recognition process. In addition, the N-glycan decorating the S-layer of S. tokodaii is different from the one of S. acidocaldarius. Therefore, each Sulfolobus species seems to have developed a unique UpsA binding pocket and unique N-glycan composition to ensure aggregation and, consequently, also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination. IMPORTANCE Type IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The UV-inducible pili system of Sulfolobales (Ups) pili from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, thereby assisting in genome stability. With this work, we show that different Sulfolobus species have specific regions in their Ups pili subunits, which allow them to interact only with cells from the same species. Additionally, different Sulfolobus species have unique surface-layer N-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition.

2019 ◽  
Author(s):  
Marleen van Wolferen ◽  
Asif Shajahan ◽  
Kristina Heinrich ◽  
Susanne Brenzinger ◽  
Ian M. Black ◽  
...  

AbstractThe UV-inducible pili system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA in order to repair DNA double strand breaks via homologous recombination. Substitution of theS. acidocaldariuspilin subunits UpsA and UpsB with their homologs fromSulfolobus tokodaiishowed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance ofN-glycosylation in the recognition process. In addition, theN-glycan decorating the S-layer ofS. tokodaiiis different from the one ofS. acidocaldarius. Therefore, eachSulfolobusspecies seems to have developed a unique UpsA binding pocket and uniqueN-glycan composition to ensure aggregation and consequently also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination.ImportanceType IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The Ups-pili from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, ensuring genome stability. With this work, we show that differentSulfolobusspecies have species-specific regions in their Ups-pilin subunits, which allow them to interact only with cells from the same species. Additionally, differentSulfolobusspecies all have unique S-layerN-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Yang Mi ◽  
Rajendra Kumar Gurumurthy ◽  
Piotr K. Zadora ◽  
Thomas F. Meyer ◽  
Cindrilla Chumduri

ABSTRACT Cervical and ovarian cancers exhibit characteristic mutational signatures that are reminiscent of mutational processes, including defective homologous recombination (HR) repair. How these mutational processes are initiated during carcinogenesis is largely unclear. Chlamydia trachomatis infections are epidemiologically associated with cervical and ovarian cancers. Previously, we showed that C. trachomatis induces DNA double-strand breaks (DSBs) but suppresses Ataxia-telangiectasia mutated (ATM) activation and cell cycle checkpoints. The mechanisms by which ATM regulation is modulated and its consequences for the repair pathway in C. trachomatis-infected cells remain unknown. Here, we found that Chlamydia bacteria interfere with the usual response of PP2A to DSBs. As a result, PP2A activity remains high, as the level of inhibitory phosphorylation at Y307 remains unchanged following C. trachomatis-induced DSBs. Protein-protein interaction analysis revealed that C. trachomatis facilitates persistent interactions of PP2A with ATM, thus suppressing ATM activation. This correlated with a remarkable lack of homologous recombination (HR) repair in C. trachomatis-infected cells. Chemical inhibition of PP2A activity in infected cells released ATM from PP2A, resulting in ATM phosphorylation. Activated ATM was then recruited to DSBs and initiated downstream signaling, including phosphorylation of MRE11 and NBS1 and checkpoint kinase 2 (Chk2)-mediated activation of the G2/M cell cycle checkpoint in C. trachomatis-infected cells. Further, PP2A inhibition led to the restoration of C. trachomatis-suppressed HR DNA repair function. Taking the data together, this study revealed that C. trachomatis modulates PP2A signaling to suppress ATM activation to prevent cell cycle arrest, thus contributing to a deficient high-fidelity HR pathway and a conducive environment for mutagenesis. IMPORTANCE Chlamydia trachomatis induces DNA double-strand breaks in host cells but simultaneously inhibits proper DNA damage response and repair mechanisms. This may render host cells prone to loss of genetic integrity and transformation. Here we show that C. trachomatis prevents activation of the key DNA damage response mediator ATM by preventing the release from PP2A, leading to a complete absence of homologous recombination repair in host cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Pilar Sanchez-Bailon ◽  
Soo-Youn Choi ◽  
Elizabeth R. Dufficy ◽  
Karan Sharma ◽  
Gavin S. McNee ◽  
...  

AbstractCross-talk between distinct protein post-translational modifications is critical for an effective DNA damage response. Arginine methylation plays an important role in maintaining genome stability, but how this modification integrates with other enzymatic activities is largely unknown. Here, we identify the deubiquitylating enzyme USP11 as a previously uncharacterised PRMT1 substrate, and demonstrate that the methylation of USP11 promotes DNA end-resection and the repair of DNA double strand breaks (DSB) by homologous recombination (HR), an event that is independent from another USP11-HR activity, the deubiquitylation of PALB2. We also show that PRMT1 is a ubiquitylated protein that it is targeted for deubiquitylation by USP11, which regulates the ability of PRMT1 to bind to and methylate MRE11. Taken together, our findings reveal a specific role for USP11 during the early stages of DSB repair, which is mediated through its ability to regulate the activity of the PRMT1-MRE11 pathway.


Oncotarget ◽  
2018 ◽  
Vol 9 (22) ◽  
pp. 15915-15930 ◽  
Author(s):  
Murilo T.D. Bueno ◽  
Marta Baldascini ◽  
Stéphane Richard ◽  
Noel F. Lowndes

2012 ◽  
Vol 11 (4) ◽  
pp. 507-517 ◽  
Author(s):  
Tadashi Takahashi ◽  
Masahiro Ogawa ◽  
Yasuji Koyama

ABSTRACT Loop-out-type recombination is a type of intrachromosomal recombination followed by the excision of a chromosomal region. The detailed mechanism underlying this recombination and the genes involved in loop-out recombination remain unknown. In the present study, we investigated the functions of ku70 , ligD , rad52 , rad54 , and rdh54 in the construction of large chromosomal deletions via loop-out recombination and the effect of the position of the targeted chromosomal region on the efficiency of loop-out recombination in Aspergillus oryzae . The efficiency of generation of large chromosomal deletions in the near-telomeric region of chromosome 3, including the aflatoxin gene cluster, was compared with that in the near-centromeric region of chromosome 8, including the tannase gene. In the Δ ku70 and Δ ku70-rdh54 strains, only precise loop-out recombination occurred in the near-telomeric region. In contrast, in the Δ ligD , Δ ku70-rad52 , and Δ ku70-rad54 strains, unintended chromosomal deletions by illegitimate loop-out recombination occurred in the near-telomeric region. In addition, large chromosomal deletions via loop-out recombination were efficiently achieved in the near-telomeric region, but barely achieved in the near-centromeric region, in the Δ ku70 strain. Induction of DNA double-strand breaks by I-SceI endonuclease facilitated large chromosomal deletions in the near-centromeric region. These results indicate that ligD , rad52 , and rad54 play a role in the generation of large chromosomal deletions via precise loop-out-type recombination in the near-telomeric region and that loop-out recombination between distant sites is restricted in the near-centromeric region by chromosomal structure.


2013 ◽  
Vol 41 (1) ◽  
pp. 314-320 ◽  
Author(s):  
John K. Blackwood ◽  
Neil J. Rzechorzek ◽  
Sian M. Bray ◽  
Joseph D. Maman ◽  
Luca Pellegrini ◽  
...  

During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5′–3′ end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna Biernacka ◽  
Yingjie Zhu ◽  
Magdalena Skrzypczak ◽  
Romain Forey ◽  
Benjamin Pardo ◽  
...  

AbstractMaintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
Sucheta Arora ◽  
Rajashree A. Deshpande ◽  
Martin Budd ◽  
Judy Campbell ◽  
America Revere ◽  
...  

ABSTRACT Sae2 promotes the repair of DNA double-strand breaks in Saccharomyces cerevisiae. The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promoting Mre11 nuclease activity. Here we identify and characterize separation-of-function mutants that lack intrinsic nuclease activity or the ability to promote Mre11 endonucleolytic activity. We find that the ability of Sae2 to promote MRX nuclease functions is important for DNA damage survival, particularly in the absence of Dna2 nuclease activity. In contrast, Sae2 nuclease activity is essential for DNA repair when the Mre11 nuclease is compromised. Resection of DNA breaks is impaired when either Sae2 activity is blocked, suggesting roles for both Mre11 and Sae2 nuclease activities in promoting the processing of DNA ends in vivo. Finally, both activities of Sae2 are important for sporulation, indicating that the processing of meiotic breaks requires both Mre11 and Sae2 nuclease activities.


Sign in / Sign up

Export Citation Format

Share Document