scholarly journals Residues of Tim44 Involved in both Association with the Translocon of the Inner Mitochondrial Membrane and Regulation of Mitochondrial Hsp70 Tethering

2008 ◽  
Vol 28 (13) ◽  
pp. 4424-4433 ◽  
Author(s):  
Dirk Schiller ◽  
Yu Chin Cheng ◽  
Qinglian Liu ◽  
William Walter ◽  
Elizabeth A. Craig

ABSTRACT Translocation of proteins from the cytosol across the mitochondrial inner membrane is driven by the action of the import motor, which is associated with the translocon on the matrix side of the membrane. It is well established that an essential peripheral membrane protein, Tim44, tethers mitochondrial Hsp70 (mtHsp70), the core of the import motor, to the translocon. This Tim44-mtHsp70 interaction, which can be recapitulated in vitro, is destabilized by binding of mtHsp70 to a substrate polypeptide. Here we report that the N-terminal 167-amino-acid segment of mature Tim44 is sufficient for both interaction with mtHsp70 and destabilization of a Tim44-mtHsp70 complex caused by client protein binding. Amino acid alterations within a 30-amino-acid segment affected both the release of mtHsp70 upon peptide binding and the interaction of Tim44 with the translocon. Our results support the idea that Tim44 plays multiple roles in mitochondrial protein import by recruiting Ssc1 and its J protein cochaperone to the translocon and coordinating their interactions to promote efficient protein translocation in vivo.

2006 ◽  
Vol 174 (5) ◽  
pp. 631-637 ◽  
Author(s):  
Yasushi Tamura ◽  
Yoshihiro Harada ◽  
Koji Yamano ◽  
Kazuaki Watanabe ◽  
Daigo Ishikawa ◽  
...  

Newly synthesized mitochondrial proteins are imported into mitochondria with the aid of protein translocator complexes in the outer and inner mitochondrial membranes. We report the identification of yeast Tam41, a new member of mitochondrial protein translocator systems. Tam41 is a peripheral inner mitochondrial membrane protein facing the matrix. Disruption of the TAM41 gene led to temperature-sensitive growth of yeast cells and resulted in defects in protein import via the TIM23 translocator complex at elevated temperature both in vivo and in vitro. Although Tam41 is not a constituent of the TIM23 complex, depletion of Tam41 led to a decreased molecular size of the TIM23 complex and partial aggregation of Pam18 and -16. Import of Pam16 into mitochondria without Tam41 was retarded, and the imported Pam16 formed aggregates in vitro. These results suggest that Tam41 facilitates mitochondrial protein import by maintaining the functional integrity of the TIM23 protein translocator complex from the matrix side of the inner membrane.


1997 ◽  
Vol 272 (6) ◽  
pp. H2983-H2988 ◽  
Author(s):  
E. E. Craig ◽  
D. A. Hood

This study was undertaken to determine whether age-related changes in the content and composition of cardiac mitochondria could be due, in part, to alterations in mitochondrial protein import. Precursor proteins malate dehydrogenase and ornithine carbamoyltransferase were synthesized by in vitro transcription and translation and were incubated with mitochondria isolated from the hearts of young (4-mo), old (22-mo), and senescent (28-mo) rats. Mitochondria from senescent animals exhibited a twofold higher import rate of both precursors into the matrix compartment compared with mitochondria from young and old animals. The expression of glucose regulated protein 75 and heat shock protein 60, two matrix chaperonins that are essential for import, was elevated in the mitochondria of both old and senescent animals before the observed changes in import. Import was equally affected in senescent and young heart mitochondria by inhibition of cardiolipin, a mitochondrial phospholipid involved in protein translocation. The results indicate that the altered mitochondrial phenotype evident in the aging myocardium cannot be accounted for by reduced rates of protein import. Furthermore, levels of cardiolipin and matrix chaperonins do not appear to be rate-limiting steps in the import process. These data suggest that the protein import step of mitochondrial assembly is subject to adaptations under pathophysiological conditions.


2009 ◽  
Vol 184 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Yasushi Tamura ◽  
Yoshihiro Harada ◽  
Takuya Shiota ◽  
Koji Yamano ◽  
Kazuaki Watanabe ◽  
...  

Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.


2018 ◽  
Author(s):  
Gonçalo C. Pereira ◽  
William J. Allen ◽  
Daniel W. Watkins ◽  
Lisa Buddrus ◽  
Dylan Noone ◽  
...  

ABSTRACTProtein translocation is a fundamental process in biology. Major gaps in our understanding of this process arises due the poor sensitivity, low time-resolution and irreproducibility of translocation assays. To address this, we applied NanoLuc split-luciferase to produce a new strategy for measuring protein transport. The system reduces the timescale of data collection from days to minutes, and allows continuous acquisition with a time-resolution in the order of seconds – yielding kinetics parameters suitable for mechanistic elucidation and mathematical fitting. To demonstrate its versatility, we implemented and validated the assay in vitro and in vivo for the bacterial Sec system, and the mitochondrial protein import apparatus. Overall, this technology represents a major step forward, providing a powerful new tool for fundamental mechanistic enquiry of protein translocation and for inhibitor (drug) screening, with an intensity and rigour unattainable through classical methods.


1994 ◽  
Vol 5 (4) ◽  
pp. 465-474 ◽  
Author(s):  
C Wachter ◽  
G Schatz ◽  
B S Glick

ATP is needed for the import of precursor proteins into mitochondria. However, the role of ATP and its site of action have been unclear. We have now investigated the ATP requirements for protein import into the mitochondrial matrix. These experiments employed an in vitro system that allowed ATP levels to be manipulated both inside and outside the mitochondrial inner membrane. Our results indicate that there are two distinct ATP requirements for mitochondrial protein import. ATP in the matrix is always needed for complete import of precursor proteins into this compartment, even when the precursors are presented to mitochondria in an unfolded conformation. In contrast, the requirement for external ATP is precursor-specific; depletion of external ATP strongly inhibits import of some precursors but has little or no effect with other precursors. A requirement for external ATP can often be overcome by denaturing the precursor with urea. We suggest that external ATP promotes the release of precursors from cytosolic chaperones, whereas matrix ATP drives protein translocation across the inner membrane.


2016 ◽  
Vol 397 (11) ◽  
pp. 1097-1114 ◽  
Author(s):  
Sebastian P. Straub ◽  
Sebastian B. Stiller ◽  
Nils Wiedemann ◽  
Nikolaus Pfanner

Abstract Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.


2003 ◽  
Vol 163 (4) ◽  
pp. 707-713 ◽  
Author(s):  
Kaye N. Truscott ◽  
Wolfgang Voos ◽  
Ann E. Frazier ◽  
Maria Lind ◽  
Yanfeng Li ◽  
...  

Transport of preproteins into the mitochondrial matrix is mediated by the presequence translocase–associated motor (PAM). Three essential subunits of the motor are known: mitochondrial Hsp70 (mtHsp70); the peripheral membrane protein Tim44; and the nucleotide exchange factor Mge1. We have identified the fourth essential subunit of the PAM, an essential inner membrane protein of 18 kD with a J-domain that stimulates the ATPase activity of mtHsp70. The novel J-protein (encoded by PAM18/YLR008c/TIM14) is required for the interaction of mtHsp70 with Tim44 and protein translocation into the matrix. We conclude that the reaction cycle of the PAM of mitochondria involves an essential J-protein.


2021 ◽  
Author(s):  
Sue Im Sim ◽  
Yuanyuan Chen ◽  
Eunyong Park

Mitochondria import nearly all their ~1,000-2,000 constituent proteins from the cytosol across their double membrane envelope. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM complex (also known as TIM23 complex), mediates import of presequence-containing proteins into the mitochondrial matrix and inner membrane. Among ~10 different subunits of the complex, the essential multi-pass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel. However, the mechanism of TIM-mediated protein import remains uncertain due to a lack of structural information on the complex. Here, we have determined the cryo-EM structure of the core TIM complex (Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. We show that, contrary to the prevailing model, Tim23 and Tim17 do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Remarkably, our data suggest that the cavity of Tim17 itself forms the protein translocation path whereas Tim23 plays a structural role. We also show how the Tim17-Tim23 heterodimer associates with the scaffold protein Tim44 and J-domain proteins to mediate Hsp70-driven polypeptide transport into the matrix. Our work provides the structural foundation to understand the mechanism of TIM-mediated protein import and sorting, a central pathway in mitochondrial biogenesis.


1973 ◽  
Vol 72 (4) ◽  
pp. 684-696 ◽  
Author(s):  
Amirav Gordon ◽  
Martin I. Surks ◽  
Jack H. Oppenheimer

ABSTRACT The in vivo and in vitro stimulation of rat hepatic mitochondrial protein synthesis by thyroxine (T4) was compared. In confirmation of Buchanan & Tapley (1966). T4 added to isolated mitochondria rapidly stimulated [14C] leucine incorporation into mitochondrial protein. The in vitro stimulation was reversed after T4 was removed by incubating the mitochondria with bovine serum albumin (BSA). The decrease in T4 stimulation of protein synthesis appeared proportional to the T4 removed by BSA. Thus, it appears probable that exchangeable T4 controls the in vitro system. In contrast, the increase in mitochondrial protein synthesis which was observed 3 to 4 days after pretreatment of hypothyroid rats with labelled and non-radioactive T4 was not reversed by BSA treatment. Moreover, mitochondrial radioactivity could not be extracted with albumin. The in vivo phenomenon does not, therefore, appear to be related to exchangeable hormone in the mitochondria. Furthermore, the estimated quantity of T4 associated with mitochondria after in vivo stimulation was at least two orders of magnitude less than that required to produce comparable stimulation of mitochondrial protein synthesis in vitro. These findings strongly suggest that in vitro and in vivo stimulation of amino acid incorporation by T4 may be mediated by different biochemical mechanisms.


2000 ◽  
Vol 279 (5) ◽  
pp. C1393-C1400 ◽  
Author(s):  
Janice Y. Grey ◽  
Michael K. Connor ◽  
Joseph W. Gordon ◽  
Masato Yano ◽  
Masataka Mori ◽  
...  

Mitochondrial biogenesis is accompanied by an increased expression of components of the protein import machinery, as well as increased import of proteins destined for the matrix. We evaluated the role of the outer membrane receptor Tom20 by varying its expression and measuring changes in the import of malate dehydrogenase (MDH) in differentiating C2C12 muscle cells. Cells transfected with Tom20 had levels that were twofold higher than in control cells. Labeling of cells followed by immunoprecipitation of MDH revealed equivalent increases in MDH import. This parallelism between import rate and Tom20 levels was also evident as a result of thyroid hormone treatment. Using antisense oligodeoxynucleotides, we inhibited Tom20 expression by 40%, resulting in 40–60% reductions in MDH import. In vitro assays also revealed that import into the matrix was more sensitive to Tom20 inhibition than import into the outer membrane. These data indicate a close relationship between induced changes in Tom20 and the import of a matrix protein, suggesting that Tom20 is involved in determining the kinetics of import. However, this relationship was dissociated during normal differentiation, since the expression of Tom20 remained relatively constant, whereas imported MDH increased 12-fold. Thus Tom20 is important in determining import during organelle biogenesis, but other mechanisms (e.g., intramitochondrial protein degradation or nuclear transcription) likely also play a role in establishing the final mitochondrial phenotype during normal muscle differentiation.


Sign in / Sign up

Export Citation Format

Share Document