scholarly journals Base Excision Repair, a Pathway Regulated by Posttranslational Modifications

2016 ◽  
Vol 36 (10) ◽  
pp. 1426-1437 ◽  
Author(s):  
Rachel J. Carter ◽  
Jason L. Parsons

Base excision repair (BER) is an essential DNA repair pathway involved in the maintenance of genome stability and thus in the prevention of human diseases, such as premature aging, neurodegenerative diseases, and cancer. Protein posttranslational modifications (PTMs), including acetylation, methylation, phosphorylation, SUMOylation, and ubiquitylation, have emerged as important contributors in controlling cellular BER protein levels, enzymatic activities, protein-protein interactions, and protein cellular localization. These PTMs therefore play key roles in regulating the BER pathway and are consequently crucial for coordinating an efficient cellular DNA damage response. In this review, we summarize the presently available data on characterized PTMs of key BER proteins, the functional consequences of these modifications at the protein level, and also the impact on BERin vitroandin vivo.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 279 ◽  
Author(s):  
Upasna Thapar ◽  
Bruce Demple

Since the discovery of the base excision repair (BER) system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3267-3267
Author(s):  
Samantha Zaunz ◽  
Lukas Lauwereins ◽  
Manmohan Bajaj ◽  
Beatriz Guapo Neves ◽  
Francheska Cadacio ◽  
...  

Abstract Postnatal hematopoietic stem (and progenitor) cells (HS(P)Cs) are especially vulnerable to oxidative stress, leading to early hematopoietic senescence and/or malignant transformation. Elevated intracellular reactive oxygen species (ROS) can, among others, oxidize nucleotides, and thus can result in genotoxicity and mutagenesis if left unrepaired. Oxidized bases, as well as other spontaneous single base modifications, are recognized and repaired by the base excision repair (BER) pathway. Hence, the BER pathway is crucial to maintain genome integrity. In contrast to other DNA repair pathways however, the role of BER in maintaining HSPC functionality remains enigmatic, chiefly because knockout (KO) of BER genes is in many cases embryonic lethal. BER is a complex multi-step repair process. After initial removal and excision of the damaged base, the apurinic/apyrimidinic (AP) site is processed by the AP endonuclease (APEX1) enzyme. At this point, the BER pathway branches into 2 sub-pathways, namely the short-patch (SP-BER; wherein DNA polymerase beta (Polβ), Ligase III (Lig3) together with X-ray repair cross-complementing protein 1 (Xrcc1) are active) and the long-patch BER (LP-BER; wherein Lig1, Flap Structure-Specific Endonuclease 1 (Fen1), and sometimes Polβ are active) for the repair synthesis and the gap filling steps. In this study we wished to address the role of BER in adult hematopoiesis. Therefore, we used CRISPR-Cas9 to KO different BER genes in adult bone marrow (BM) HS(P)Cs, including two genes common to the BER (sub-)pathway(s) (Apex1 and Polβ) as well as one gene in the SP-BER (Xrcc1) and one gene in the LP-BER (Lig1) pathway. The effect thereof was evaluated on HS(P)C repopulation in vivo as well as on HS(P)C expansion during long-term in vitro culture (using the culture medium described by Wilkinson et al., Nature 2019). All CRISPR-Cas9 experiments were validated using a second sgRNA targeting the selected BER genes. Lig1-KO caused in vivo HSPC dysfunction: at 20 weeks post-transplantation, significantly less Lig1 KO cells were observed in the committed progenitor (HPC) and lineage committed (Lin +) BM compartments. By contrast, KO of Xrcc1 had only minor effects on HS(P)C repopulation, but we observed increased HSC expansion and myeloid biased differentiation in some recipient mice, which might correspond to clonal hematopoiesis and is consistent with the finding of XRCC1 loss-of-function mutation in myelodysplastic patients (Joshi et al, Ann Hematol 2016). Knockout of Polβ did not affect hematopoiesis in vivo or in vitro. The most severe phenotype was observed when we knocked out Apex1, as Apex1-KO HS(P)Cs failed to repopulate irradiated recipient mice. Already after 2 weeks, significantly less Apex1 deficient cells were detected in the different blood lineages and nearly no CRISPR-Cas9 KO cells could be detected from 4 weeks onwards. This was confirmed in vitro, where reduced expansion of Apex1 KO BM cells was observed. APEX1 has two major functional activities, namely its nuclease activity, involved in BER, and its redox activity (also called Ref-1 function) important in reducing oxidized transcription factors and therefore implicated in transcriptional regulation. However, little is known regarding the nuclease and Ref-1 function(s) in primary adult hematopoietic cells. We therefore cultured BM HS(P)Cs for 1 week in the continuous presence of 2 distinct chemicals blocking the APEX1 nucleases, or 2 different chemicals inhibiting specifically the Ref-1 function. We demonstrated that both APEX1 functions are essential for hematopoiesis, even if the 2 functions appear to support the survival, expansion and maintenance of HS(P)Cs through different mechanisms. While the Ref-1 function was essential for proliferation (as both Ref-1 inhibitors cause cell cycle arrest) of all the lineages (including the Lin + cells), both inhibitors of the nuclease function affected more the expansion/survival of the less committed HS(P)Cs without leading to any cell cycle arrest. In conclusion, this study demonstrates for the first time the important role of BER genes in adult hematopoiesis, often deregulated in cancer, including hematopoietic malignancies. We observed a particularly severe phenotype upon loss of Apex1 in adult HSPCs, and ongoing studies (such as RNA sequencing analysis) should provide novel insights in underlying mechanisms of APEX1 deficiencies in HS(P)Cs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Chemosphere ◽  
2017 ◽  
Vol 184 ◽  
pp. 795-805 ◽  
Author(s):  
Chun-Jiao Lu ◽  
Xue-Feng Jiang ◽  
Muhammad Junaid ◽  
Yan-Bo Ma ◽  
Pan-Pan Jia ◽  
...  

NAR Cancer ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aaron M Fleming ◽  
Cynthia J Burrows

Abstract Many cancer-associated genes are regulated by guanine (G)-rich sequences that are capable of refolding from the canonical duplex structure to an intrastrand G-quadruplex. These same sequences are sensitive to oxidative damage that is repaired by the base excision repair glycosylases OGG1 and NEIL1–3. We describe studies indicating that oxidation of a guanosine base in a gene promoter G-quadruplex can lead to up- and downregulation of gene expression that is location dependent and involves the base excision repair pathway in which the first intermediate, an apurinic (AP) site, plays a key role mediated by AP endonuclease 1 (APE1/REF1). The nuclease activity of APE1 is paused at a G-quadruplex, while the REF1 capacity of this protein engages activating transcription factors such as HIF-1α, AP-1 and p53. The mechanism has been probed by in vitro biophysical studies, whole-genome approaches and reporter plasmids in cellulo. Replacement of promoter elements by a G-quadruplex sequence usually led to upregulation, but depending on the strand and precise location, examples of downregulation were also found. The impact of oxidative stress-mediated lesions in the G-rich sequence enhanced the effect, whether it was positive or negative.


2020 ◽  
Vol 48 (17) ◽  
pp. 9859-9871
Author(s):  
Kaiying Cheng ◽  
Ying Xu ◽  
Xuanyi Chen ◽  
Huizhi Lu ◽  
Yuan He ◽  
...  

Abstract RecJ reportedly participates in the base excision repair (BER) pathway, but structural and functional data are scarce. Herein, the Deinococcus radiodurans RecJ (drRecJ) deletion strain exhibited extreme sensitivity to hydrogen peroxide and methyl-methanesulphonate, as well as a high spontaneous mutation rate and an accumulation of unrepaired abasic sites in vivo, indicating the involvement of drRecJ in the BER pathway. The binding affinity and nuclease activity preference of drRecJ toward DNA substrates containing a 5′-P-dSpacer group, a 5′-deoxyribose-phosphate (dRP) mimic, were established. A 1.9 Å structure of drRecJ in complex with 5′-P-dSpacer-modified single-stranded DNA (ssDNA) revealed a 5′-monophosphate binding pocket and occupancy of 5′-dRP in the drRecJ nuclease core. The mechanism for RecJ 5′-dRP catalysis was explored using structural and biochemical data, and the results implied that drRecJ is not a canonical 5′-dRP lyase. Furthermore, in vitro reconstitution assays indicated that drRecJ tends to participate in the long-patch BER pathway rather than the short-patch BER pathway.


2021 ◽  
Author(s):  
Karen Salas Briceno ◽  
Susan R. Ross

Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative strand DNA during reverse transcription, leading to G to A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an UNG and mouse APOBEC3 knockout background (UNG-/-APO-/-) and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared to A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than did those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. Importance While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo . Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase ( Ung ) gene, and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection – in unintegrated nuclear viral reverse transcribed DNA, resulting in its degradation and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


2021 ◽  
Author(s):  
Karen Salas Briceno ◽  
Susan R. Ross

AbstractApolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative strand DNA during reverse transcription, leading to G to A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an UNG and mouse APOBEC3 knockout background (UNG-/-APO-/-) and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared to A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than did those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA.ImportanceWhile APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo. Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase (Ung) gene, and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection – in unintegrated nuclear viral reverse transcribed DNA, resulting in its degradation and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


2020 ◽  
Author(s):  
Hong-qiang Chen ◽  
Dong-jiao Chen ◽  
Yan Li ◽  
Wen-bo Yuan ◽  
Jun Fan ◽  
...  

Abstract Backgroud: The methylcytosine dioxygenase Ten-eleven translocation 1 (TET1) is an important regulator for the balance of DNA methylation and hydroxymethylation through various pathways. Increasing evidence has suggested that TET1 probably involved in DNA methylation and demethylation dysregulation during chemical carcinogenesis. However, the role and mechanism of TET1 during lung cancer remains unclear. Methods: The gene and protein expression were detected by qRT-PCR, Western blot and immunohistochemistry during lung carcinogenesis. Methylation and hydroxymethylation status were evaluated by MeDIP-qPCR and hMeDIP-qPCR. The effect and mechanism of TET1 on lung cancer were identified both in vitro and in vivo models. Results: In this study, we found that TET1 expression was significantly down-regulated and the methylation level was significantly up-regulated in 3-MCA-induced cell malignant transformation model, rat chemical carcinogenesis model, and human lung cancer tissues. Demethylation experiment further confirmed that DNA methylation negatively regulated TET1 gene expression. TET1 overexpression inhibited cell proliferation, migration and invasion in vitro and in vivo, while knockdown of TET1 resulted in an opposite phenotype. DNA hydroxymethylation level in the promoter region of base excision repair (BER) pathway key genes XRCC1, OGG1, APEX1 significantly decreased and the degree of methylation gradually increased in malignant transformed cells. After differential expression of TET1, the level of hydroxymethylation, methylation and expression of these genes also changed significantly. Furthermore, TET1 binds to the promoter of XRCC1, OGG1, and APEX1 to maintain them hydroxymethylated. Blockade of BER pathway key gene alone or in combination significantly diminished the effect of TET1. Conclusions: Our study demonstrated for the first time that TET1 gene expression is regulated by DNA methylation and TET1-mediated hydroxymethylation regulates BER pathway to inhibit the proliferation, migration and invasion during the 3-MCA-induced lung carcinogenesis. These results may suggest that TET1 gene can be used as a potential biomarker and therapy target for lung cancer.


Sign in / Sign up

Export Citation Format

Share Document