scholarly journals New Role for Serum Response Factor in Postnatal Skeletal Muscle Growth and Regeneration via the Interleukin 4 and Insulin-Like Growth Factor 1 Pathways

2006 ◽  
Vol 26 (17) ◽  
pp. 6664-6674 ◽  
Author(s):  
Claude Charvet ◽  
Christophe Houbron ◽  
Ara Parlakian ◽  
Julien Giordani ◽  
Charlotte Lahoute ◽  
...  

ABSTRACT Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.

1990 ◽  
Vol 259 (1) ◽  
pp. E89-E95 ◽  
Author(s):  
D. L. DeVol ◽  
P. Rotwein ◽  
J. L. Sadow ◽  
J. Novakofski ◽  
P. J. Bechtel

We have investigated the hypothesis that there is local regulation of insulin-like growth factor (IGF) gene expression during skeletal muscle growth. Compensatory hypertrophy was induced in the soleus, a predominantly slow-twitch muscle, and plantaris, a fast-twitch muscle, in 11- to 12-wk-old female Wistar rats by unilateral cutting of the distal gastrocnemius tendon. Animals were killed 2, 4, or 8 days later, and muscles of the nonoperated leg served as controls. Muscle weight increased throughout the experimental period, reaching 127% (soleus) or 122% (plantaris) of control values by day 8. In both growing muscles, IGF-I mRNA, quantitated by a solution-hybridization nuclease-protection assay, rose by nearly threefold on day 2 and remained elevated throughout the experimental period. IGF-II mRNA levels also increased over controls. A more dramatic response was seen in hypophysectomized rats, where IGF-I mRNA levels rose by 8- to 13-fold, IGF-II values by 3- to 7-fold, and muscle mass increased on day 8 to 149% (soleus) or 133% (plantaris) of the control contralateral limb. These results indicate that signals propagated during muscle hypertrophy enhance the expression of both IGF genes, that modulation of IGF-I mRNA levels can occur in the absence of growth hormone, and that locally produced IGF-I and IGF-II may play a role in skeletal muscle growth.


1993 ◽  
Vol 13 (2) ◽  
pp. 1264-1272 ◽  
Author(s):  
C K Vincent ◽  
A Gualberto ◽  
C V Patel ◽  
K Walsh

Regulatory sequences of the M isozyme of the creatine kinase (MCK) gene have been extensively mapped in skeletal muscle, but little is known about the sequences that control cardiac-specific expression. The promoter and enhancer sequences required for MCK gene expression were assayed by the direct injection of plasmid DNA constructs into adult rat cardiac and skeletal muscle. A 700-nucleotide fragment containing the enhancer and promoter of the rabbit MCK gene activated the expression of a downstream reporter gene in both muscle tissues. Deletion of the enhancer significantly decreased expression in skeletal muscle but had no detectable effect on expression in cardiac muscle. Further deletions revealed a CArG sequence motif at position -179 within the promoter that was essential for cardiac-specific expression. The CArG element of the MCK promoter bound to the recombinant serum response factor and YY1, transcription factors which control expression from structurally similar elements in the skeletal actin and c-fos promoters. MCK-CArG-binding activities that were similar or identical to serum response factor and YY1 were also detected in extracts from adult cardiac muscle. These data suggest that the MCK gene is controlled by different regulatory programs in adult cardiac and skeletal muscle.


2000 ◽  
Vol 275 (39) ◽  
pp. 30387-30393 ◽  
Author(s):  
Blanca Camoretti-Mercado ◽  
Hong-W. Liu ◽  
Andrew J. Halayko ◽  
Sean M. Forsythe ◽  
John W. Kyle ◽  
...  

2007 ◽  
Vol 85 (3-4) ◽  
pp. 349-359 ◽  
Author(s):  
Madhu Gupta ◽  
Vithida Sueblinvong ◽  
Mahesh P. Gupta

Single-strand DNA-binding proteins, Purα and Purβ, play a role in cell growth and differentiation by modulating both transcriptional and translational controls of gene expression. We have previously characterized binding of Purα and Purβ proteins to a purine-rich negative regulatory (PNR) element of the rat cardiac α-myosin heavy chain (MHC) gene that controls cardiac muscle specificity. In this study we investigated the role of upstream sequences of the α-MHC promoter in Purβ-mediated gene repression. In the transient transfection analysis overexpression of Purβ revealed a negative regulatory effect on serum response factor (SRF)-dependent α-MHC and α-skeletal actin expression in muscle cell background. Contrary, in nonmuscle cells, Purβ showed no repressive effect. The results obtained from gel-shift assays demonstrated a sequence specific competitive binding of Purβ to the minus strand of the SRF-binding, CArG box sequences of different muscle genes, but not to the SRF-binding, SRE sequences of the c-fos gene. These element-specific associations of Purβ with muscle CArG boxes may, in part, explain why muscle gene expression is downregulated in disease states in which Purβ levels are elevated. This data also provide a mechanistic distinction between muscle CArG boxes and nonmuscle serum response element (SRE) sequences in terms of their affinity to bind to SRF and their ability to regulate cell-specific gene expression.


1993 ◽  
Vol 13 (2) ◽  
pp. 1264-1272
Author(s):  
C K Vincent ◽  
A Gualberto ◽  
C V Patel ◽  
K Walsh

Regulatory sequences of the M isozyme of the creatine kinase (MCK) gene have been extensively mapped in skeletal muscle, but little is known about the sequences that control cardiac-specific expression. The promoter and enhancer sequences required for MCK gene expression were assayed by the direct injection of plasmid DNA constructs into adult rat cardiac and skeletal muscle. A 700-nucleotide fragment containing the enhancer and promoter of the rabbit MCK gene activated the expression of a downstream reporter gene in both muscle tissues. Deletion of the enhancer significantly decreased expression in skeletal muscle but had no detectable effect on expression in cardiac muscle. Further deletions revealed a CArG sequence motif at position -179 within the promoter that was essential for cardiac-specific expression. The CArG element of the MCK promoter bound to the recombinant serum response factor and YY1, transcription factors which control expression from structurally similar elements in the skeletal actin and c-fos promoters. MCK-CArG-binding activities that were similar or identical to serum response factor and YY1 were also detected in extracts from adult cardiac muscle. These data suggest that the MCK gene is controlled by different regulatory programs in adult cardiac and skeletal muscle.


2009 ◽  
Vol 284 (24) ◽  
pp. 16308-16316 ◽  
Author(s):  
Ju-Ryoung Kim ◽  
Hae Jin Kee ◽  
Ji-Young Kim ◽  
Hosouk Joung ◽  
Kwang-Il Nam ◽  
...  

Skeletal muscle differentiation is well regulated by a series of transcription factors. We reported previously that enhancer of polycomb1 (Epc1), a chromatin protein, can modulate skeletal muscle differentiation, although the mechanisms of this action have yet to be defined. Here we report that Epc1 recruits both serum response factor (SRF) and p300 to induce skeletal muscle differentiation. Epc1 interacted physically with SRF. Transfection of Epc1 to myoblast cells potentiated the SRF-induced expression of skeletal muscle-specific genes as well as multinucleation. Proximal CArG box in the skeletal α-actin promoter was responsible for the synergistic activation of the promoter-luciferase. Epc1 knockdown caused a decrease in the acetylation of histones associated with serum response element (SRE) of the skeletal α-actin promoter. The Epc1·SRF complex bound to the SRE, and the knockdown of Epc1 resulted in a decrease in SRF binding to the skeletal α-actin promoter. Epc1 recruited histone acetyltransferase activity, which was potentiated by cotransfection with p300 but abolished by si-p300. Epc1 directly bound to p300 in myoblast cells. Epc1+/− mice showed distortion of skeletal α-actin, and the isolated myoblasts from the mice had impaired muscle differentiation. These results suggest that Epc1 is required for skeletal muscle differentiation by recruiting both SRF and p300 to the SRE of muscle-specific gene promoters.


Sign in / Sign up

Export Citation Format

Share Document