scholarly journals The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span

2015 ◽  
Vol 35 (22) ◽  
pp. 3892-3908 ◽  
Author(s):  
Pavla Vasicova ◽  
Renata Lejskova ◽  
Ivana Malcova ◽  
Jiri Hasek

Stationary-growth-phaseSaccharomyces cerevisiaeyeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. InS. cerevisiaestationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Ourin vivoanalyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficientcox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth.

2014 ◽  
Vol 58 (10) ◽  
pp. 5964-5975 ◽  
Author(s):  
Jing-Hung Wang ◽  
Rachna Singh ◽  
Michael Benoit ◽  
Mimi Keyhan ◽  
Matthew Sylvester ◽  
...  

ABSTRACTStationary-phase bacteria are important in disease. The σs-regulated general stress response helps them become resistant to disinfectants, but the role of σsin bacterial antibiotic resistance has not been elucidated. Loss of σsrendered stationary-phaseEscherichia colimore sensitive to the bactericidal antibiotic gentamicin (Gm), and proteomic analysis suggested involvement of a weakened antioxidant defense. Use of the psfiAgenetic reporter, 3′-(p-hydroxyphenyl) fluorescein (HPF) dye, and Amplex Red showed that Gm generated more reactive oxygen species (ROS) in the mutant. HPF measurements can be distorted by cell elongation, but Gm did not affect stationary-phase cell dimensions. Coadministration of the antioxidantN-acetyl cysteine (NAC) decreased drug lethality particularly in the mutant, as did Gm treatment under anaerobic conditions that prevent ROS formation. Greater oxidative stress, due to insufficient quenching of endogenous ROS and/or respiration-linked electron leakage, therefore contributed to the greater sensitivity of the mutant; infection by a uropathogenic strain in mice showed this to be the case alsoin vivo. Disruption of antioxidant defense by eliminating the quencher proteins, SodA/SodB and KatE/SodA, or the pentose phosphate pathway proteins, Zwf/Gnd and TalA, which provide NADPH for ROS decomposition, also generated greater oxidative stress and killing by Gm. Thus, besides its established mode of action, Gm also kills stationary-phase bacteria by generating oxidative stress, and targeting the antioxidant defense ofE. colican enhance its efficacy. Relevant aspects of the current controversy on the role of ROS in killing by bactericidal drugs of exponential-phase bacteria, which represent a different physiological state, are discussed.


1996 ◽  
Vol 7 (1) ◽  
pp. 1-15 ◽  
Author(s):  
G I Sizonenko ◽  
T S Karpova ◽  
D J Gattermeir ◽  
J A Cooper

To investigate physiologic functions and structural correlates for actin capping protein (CP), we analyzed site-directed mutations in CAP1 and CAP2, which encode the alpha and beta subunits of CP in Saccharomyces cerevisiae. Mutations in four different regions caused a loss of CP function in vivo despite the presence of mutant protein in the cells. Mutations in three regions caused a complete loss of all aspects of function, including the actin distribution, viability with sac6, and localization of CP to actin cortical patches. Mutation of the fourth region led to partial loss of only one function-formation of actin cables. Some mutations retained function and exhibited the complete wild-type phenotype, and some mutations led to a complete loss of protein and therefore loss of function. The simplest hypothesis that can explain these results is that a single biochemical property is necessary for all in vivo functions. This biochemical property is most likely binding to actin filaments, because the nonfunctional mutant CPs no longer co-localize with actin filaments in vivo and because direct binding of CP to actin filaments has been well established by studies with purified proteins in vitro. More complex hypotheses, involving the existence of additional biochemical properties important for function, cannot be excluded by this analysis.


2012 ◽  
Vol 11 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Fabien Lefèbvre ◽  
Valérie Prouzet-Mauléon ◽  
Michel Hugues ◽  
Marc Crouzet ◽  
Aurélie Vieillemard ◽  
...  

ABSTRACT Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae , the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P 2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


1984 ◽  
Vol 99 (5) ◽  
pp. 1867-1871 ◽  
Author(s):  
M P Sheetz ◽  
R Chasan ◽  
J A Spudich

Sheetz and Spudich (1983, Nature (Lond.), 303:31-35) showed that ATP-dependent movement of myosin along actin filaments can be measured in vitro using myosin-coated beads and oriented actin cables from Nitella. To establish this in vitro movement as a quantitative assay and to understand better the basis for the movement, we have defined the factors that affect the myosin-bead velocity. Beads coated with skeletal muscle myosin move at a rate of 2-6 micron/s, depending on the myosin preparation. This velocity is independent of myosin concentration on the bead surface for concentrations above a critical value (approximately 20 micrograms myosin/2.5 X 10(9) beads of 1 micron in diameter). Movement is optimal between pH 6.8 and 7.5, at KCl concentrations less than 70 mM, at ATP concentrations greater than 0.1 mM, and at Mg2+ concentrations between 2 and 6 mM. From the temperature dependence of bead velocity, we calculate activation energies of 90 kJ/mol below 22 degrees C and 40 kJ/mol above 22 degrees C. Different myosin species move at their own characteristic velocities, and these velocities are proportional to their actin-activated ATPase activities. Further, the velocities of beads coated with smooth or skeletal muscle myosin correlate well with the known in vivo rates of myosin movement along actin filaments in these muscles. This in vitro assay, therefore, provides a rapid, reproducible method for quantitating the ATP-dependent movement of myosin molecules on actin.


2017 ◽  
Vol 37 (11) ◽  
Author(s):  
Jayasankar Mohanakrishnan Kaimal ◽  
Ganapathi Kandasamy ◽  
Fabian Gasser ◽  
Claes Andréasson

ABSTRACT Protein aggregation is intimately associated with cellular stress and is accelerated during aging, disease, and cellular dysfunction. Yeast cells rely on the ATP-consuming chaperone Hsp104 to disaggregate proteins together with Hsp70. Hsp110s are ancient and abundant chaperones that form complexes with Hsp70. Here we provide in vivo data showing that the Saccharomyces cerevisiae Hsp110s Sse1 and Sse2 are essential for Hsp104-dependent protein disaggregation. Following heat shock, complexes of Hsp110 and Hsp70 are recruited to protein aggregates and function together with Hsp104 in the disaggregation process. In the absence of Hsp110, targeting of Hsp70 and Hsp104 to the aggregates is impaired, and the residual Hsp104 that still reaches the aggregates fails to disaggregate. Thus, coordinated activities of both Hsp104 and Hsp110 are required to reactivate aggregated proteins. These findings have important implications for the understanding of how eukaryotic cells manage misfolded and amyloid proteins.


2014 ◽  
Vol 25 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Joseph E. Clayton ◽  
Luther W. Pollard ◽  
Maria Sckolnick ◽  
Carol S. Bookwalter ◽  
Alex R. Hodges ◽  
...  

A hallmark of class-V myosins is their processivity—the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity.


2013 ◽  
Vol 12 (11) ◽  
pp. 1538-1546 ◽  
Author(s):  
Barbara Sciskala ◽  
Ralf Kölling

ABSTRACT The Saccharomyces cerevisiae ESCRT-III protein Snf7 is part of an intricate interaction network at the endosomal membrane. Interaction maps of Snf7 were established by measuring the degree of binding of individual binding partners to putative binding motifs along the Snf7 sequence by glutathione S -transferase (GST) pulldown. For each interaction partner, distinct binding profiles were obtained. The following observations were made. The ESCRT-III subunits Vps20 and Vps24 showed a complementary binding pattern, suggesting a model for the series of events in the ESCRT-III functional cycle. Vps4 bound to individual Snf7 motifs but not to full-length Snf7. This suggests that Vps4 does not bind to the closed conformation of Snf7. We also demonstrate for the first time that the ALIX/Bro1 homologue Rim20 binds to the α6 helix of Snf7. Analysis of a Snf7 α6 deletion mutant showed that the α6 helix is crucial for binding of Bro1 and Rim20 in vivo and is indispensable for the multivesicular body (MVB)-sorting and Rim-signaling functions of Snf7. The Snf7Δα6 protein still appeared to be incorporated into ESCRT-III complexes at the endosomal membrane, but disassembly of the complex seemed to be defective. In summary, our study argues against the view that the ESCRT cycle is governed by single one-to-one interactions between individual components and emphasizes the network character of the ESCRT interactions.


Author(s):  
S.M. El Hassan ◽  
C.J. Newbold ◽  
R.J. Wallace

It has been suggested that the mechanism by which yeast cultures (YC), based on Saccharomyces cerevisiae, improve ruminant production is by stimulating rumen fibre digestion and microbial protein flow from the rumen. Both of these effects have in turn been related to the increases in bacterial growth in the rumen observed when YC is added to the diet. However, although it is has been shown that the effectiveness of YC in improving productivity is influenced by the composition of the diet fed (Williams and Newbold, 1990), little is known about how the ability of YC to stimulate bacterial numbers in the rumen is affected by diet composition.The effect of diet on the stimulation of bacterial numbers in the rumen by YC was investigated in the rumen simulation technique (Rusitec). Grass silage was prepared from a sward of perennial rye-grass, without the use of a preservative. Fresh grass was collected from the sward prior to ensilage and stored at -20°C. Grass (5.96 g dry matter (DM) /day) and grass silage (6.54 g DM/ day) were compared alone or supplemented with 500 mg / day YC (Yea-sacc, Alltech), in triplicate, in an experiment lasting 21 days.Four rumen cannulated sheep, allowed ad lib access to grass silage, were used to investigate further the effects of YC on bacterial numbers in the rumen in vivo. The effects of YC (4 g/ day) were investigated in a 2 × 2 factorial design with 28 day periods.


2020 ◽  
Vol 202 (7) ◽  
Author(s):  
Ritam Sinha ◽  
Rhiannon M. LeVeque ◽  
Marvin Q. Bowlin ◽  
Michael J. Gray ◽  
Victor J. DiRita

ABSTRACT Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni. Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo. Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival. IMPORTANCE Campylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.


2020 ◽  
Vol 31 (5) ◽  
pp. 335-347 ◽  
Author(s):  
Luther W. Pollard ◽  
Mikael V. Garabedian ◽  
Salvatore L. Alioto ◽  
Shashank Shekhar ◽  
Bruce L. Goode

Yeast actin cables are reconstituted from seven purified proteins, providing a powerful demonstration of how a minimal set of components can self-organize into a micron-scale structure that has many of the same features of actin cables found in vivo.


Sign in / Sign up

Export Citation Format

Share Document