scholarly journals Membrane phase state and the rearrangement of hematopoietic cell surface receptors.

1981 ◽  
Vol 1 (2) ◽  
pp. 128-135 ◽  
Author(s):  
P L Williamson ◽  
W A Massey ◽  
B M Phelps ◽  
R A Schlegel

Transformed murine hematopoietic cells of several lineages bound the fluorescent membrane probe merocyanine 540, whereas their normal counterparts did not. Similar selective binding was reproduced in artificial liposomes which bound this probe above their phase transition temperature, but not below it. The regions of the membrane to which merocyanine 540 binds along with the receptors for the lectin concanavalin A, but not the receptors for the lectin wheat germ agglutinin, were rearranged during the course of induced differentiation of erythroleukemia cells. Based on these findings, we propose a model of hematopoietic cell surface differentiation in which proteins such as concanavalin A receptors, which are destined for removal from the plasma membrane, are specifically associated with disordered, liquid-like lipid domains which can be visualized with merocyanine 540. For the specific case of erythroid differentiation, these domains and their associated proteins are collected at the region of the membrane where nuclear extrusion occurs and are eliminated from the reticulocyte plasma membrane by the enucleation event.

1981 ◽  
Vol 1 (2) ◽  
pp. 128-135
Author(s):  
P L Williamson ◽  
W A Massey ◽  
B M Phelps ◽  
R A Schlegel

Transformed murine hematopoietic cells of several lineages bound the fluorescent membrane probe merocyanine 540, whereas their normal counterparts did not. Similar selective binding was reproduced in artificial liposomes which bound this probe above their phase transition temperature, but not below it. The regions of the membrane to which merocyanine 540 binds along with the receptors for the lectin concanavalin A, but not the receptors for the lectin wheat germ agglutinin, were rearranged during the course of induced differentiation of erythroleukemia cells. Based on these findings, we propose a model of hematopoietic cell surface differentiation in which proteins such as concanavalin A receptors, which are destined for removal from the plasma membrane, are specifically associated with disordered, liquid-like lipid domains which can be visualized with merocyanine 540. For the specific case of erythroid differentiation, these domains and their associated proteins are collected at the region of the membrane where nuclear extrusion occurs and are eliminated from the reticulocyte plasma membrane by the enucleation event.


1983 ◽  
Vol 62 (1) ◽  
pp. 287-299
Author(s):  
M.N. Meirelles ◽  
A. Martinez-Palomo ◽  
T. Souto-Padron ◽  
W. De Souza

Untreated mouse peritoneal macrophages as well as macrophages treated with concanavalin A (ConA) were incubated in the presence of untreated or ConA-treated epimastigotes and trypomastigotes of Trypanosoma cruzi. Treatment of epimastigotes or trypomastigotes with ConA increased or decreased their uptake by macrophages, respectively. Treatment of their macrophages with ConA reduced by 70% and increased by five times the ingestion of epimastigotes and trypomastigotes, respectively. These results are discussed in relation to previous studies on the mobility of ConA receptors in the membrane of the parasite. Using fluorescein- or ferritin-labelled ConA we observed that ConA binding sites located on the plasma membrane of macrophages are internalized during endocytosis of T. cruzi, and observed in association with the membrane of the endocytic vacuole. Vacuoles without parasites showed a uniform distribution of ConA binding sites, while these sites were distributed in patches in vacuoles containing parasites. These results, in association with others previously reported, suggest the involvement of glycoproteins and/or glycolipids localized on the cell surface of T. cruzi and macrophages during the T. cruzi-macrophage interaction.


1989 ◽  
Vol 92 (1) ◽  
pp. 85-91
Author(s):  
W.F. Patton ◽  
M.R. Dhanak ◽  
B.S. Jacobson

The plasma membrane proteins of Dictyostelium discoideum were characterized with respect to their partitioning into the Triton-insoluble cytoskeleton fraction of the cell during concanavalin A-induced capping. Two fractions of plasma membrane-associated concanavalin A were identified; one that immediately associated with the cytoskeleton fraction via cell surface glycoproteins, and one that partitioned with the cytoskeleton only after extensive cell surface glycoprotein cross-linking. Three major classes of polypeptides were found in the plasma membrane that differed with respect to their partitioning properties into the cytoskeleton fraction. The temporal order of association of the polypeptides with the cytoskeleton during concanavalin A-induced capping corresponded to the strength of their association with the cytoskeleton fraction as determined by pH and ionic strength elution from unligated cytoskeletons.


2010 ◽  
pp. 169-176
Author(s):  
R. Andres Floto

This section outlines the general principles of intracellular signalling. Focusing on cell surface receptors, the requirements for effective transmission of information across the plasma membrane are outlined. The principal mechanisms utilized in mammalian signal transduction are described. For each, the pathological consequences of aberrant signalling and means by which pathways can be pharmacologically targeted are described in molecular terms....


2020 ◽  
pp. 256-265
Author(s):  
R. Andres Floto

This chapter outlines the general principles of intracellular signalling. Focusing on cell surface receptors, the requirements for effective transmission of information across the plasma membrane are outlined. The principal mechanisms utilized in mammalian signal transduction are described. For each, the pathological consequences of aberrant signalling and means by which pathways can be pharmacologically targeted are described in molecular terms. Intracellular signalling pathways permit the transmission and integration of information within cells. Mammalian receptor signalling relies on only a small number of distinct molecular processes which interact to determine cellular responses. Rapid advances in our knowledge of the mechanisms of intracellular signalling has greatly increased understanding of how cells function physiologically, how they malfunction pathologically, and how their behaviour might be manipulated therapeutically.


2009 ◽  
Vol 418 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Audrey Parent ◽  
Emilie Hamelin ◽  
Pascale Germain ◽  
Jean-Luc Parent

The β2ARs (β2-adrenergic receptors) undergo ligand-induced internalization into early endosomes, but then are rapidly and efficiently recycled back to the plasma membrane, restoring the numbers of functional cell-surface receptors. Gathering evidence suggests that, during prolonged exposure to agonist, some β2ARs also utilize a slow recycling pathway through the perinuclear recycling endosomal compartment regulated by the small GTPase Rab11. In the present study, we demonstrate by co-immunoprecipitation studies that there is a β2AR–Rab11 association in HEK-293 cells (human embryonic kidney cells). We show using purified His6-tagged Rab11 protein and β2AR intracellular domains fused to GST (glutathione transferase) that Rab11 interacts directly with the C-terminal tail of β2AR, but not with the other intracellular domains of the receptor. Pull-down and immunoprecipitation assays revealed that the β2AR interacts preferentially with the GDP-bound form of Rab11. Arg333 and Lys348 in the C-terminal tail of the β2AR were identified as crucial determinants for Rab11 binding. A β2AR construct with these two residues mutated to alanine, β2AR RK/AA (R333A/K348A), was generated. Analysis of cell-surface receptors by ELISA revealed that the recycling of β2AR RK/AA was drastically reduced when compared with wild-type β2AR after agonist washout, following prolonged receptor stimulation. Confocal microscopy demonstrated that the β2AR RK/AA mutant failed to co-localize with Rab11 and recycle to the plasma membrane, in contrast with the wild-type receptor. To our knowledge, the present study is the first report of a direct interaction between the β2AR and a Rab GTPase, which is required for the accurate intracellular trafficking of the receptor.


1985 ◽  
Vol 100 (3) ◽  
pp. 826-834 ◽  
Author(s):  
M D Snider ◽  
O C Rogers

The intracellular movement of cell surface transferrin receptor (TfR) after internalization was studied in K562 cultured human erythroleukemia cells. The sialic acid residues of the TfR glycoprotein were used to monitor transport to the Golgi complex, the site of sialyltransferases. Surface-labeled cells were treated with neuraminidase, and readdition of sialic acid residues, monitored by isoelectric focusing of immunoprecipitated TfR, was used to assess the movement of receptor to sialyltransferase-containing compartments. Asialo-TfR was resialylated by the cells with a half-time of 2-3 h. Resialylation occurred in an intracellular organelle, since it was inhibited by treatments that allow internalization of surface components but block transfer out of the endosomal compartment. Moreover, roughly half of the resialylated molecules were cleaved when cells were retreated with neuraminidase after culturing, indicating that this fraction of the molecules had returned to the cell surface. These results suggest that TfR is transported from the cell surface to the Golgi complex, the intracellular site of sialyltransferases, and then returns to the cell surface. This pathway, which has not been previously described for a cell surface receptor, may be different from the route followed by TfR in iron uptake, since reported rates of transferrin uptake and release are significantly more rapid than the resialylation of asialo-TfR.


2020 ◽  
Vol 477 (12) ◽  
pp. 2327-2345 ◽  
Author(s):  
Alessandra Casamento ◽  
Emmanuel Boucrot

Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document