scholarly journals Physical mapping, amplification, and overexpression of the mouse mdr gene family in multidrug-resistant cells.

1990 ◽  
Vol 10 (4) ◽  
pp. 1642-1651 ◽  
Author(s):  
M Raymond ◽  
E Rose ◽  
D E Housman ◽  
P Gros

The mouse mdr gene family consists of three distinct genes (mdr1, mdr2, and mdr3), for which we have isolated full-length cDNA clones. cDNA subfragments corresponding to discrete regions showing little sequence conservation among the three mdr genes were used as gene-specific DNA probes in hybridization experiments. Long-range mapping by pulse-field gel electrophoresis indicated that the three mdr genes are closely linked on a genomic DNA segment of approximately 625 kilobases. The gene order and direction of transcription of the three genes were determined and indicate the arrangement (5') mdr3 (3')-(5') mdr1 (3')-(3') mdr2 (5'). Southern blotting analyses of genomic DNA from a panel of independently derived multidrug-resistant cell lines identified mdr gene amplification in 10 of 12 cell lines studied. In individual cell lines showing gene amplification, the copy number of each of the three mdr genes was identical, suggesting that the three mdr genes became amplified as part of a single amplicon in these cells. Although increased expression of all three mdr genes was detected in 2 of 12 cell lines tested, multidrug resistance was associated in 10 of 12 lines with the independent overexpression of either mdr1 (7 of 12) or mdr3 (3 of 12) but not mdr2. mdr1 overexpression was consistently associated with gene amplification, while increased mdr3 expression was detected in certain cell lines that did not show gene amplification. Increased levels of mdr1 mRNA were linked to the overexpression of a P glycoprotein of apparent molecular weight 180,000 to 200,000, whereas increased mdr3 expression resulted in increased expression of a P glycoprotein of molecular weight 160,000 to 180,000. Our results suggest that at least two members of the mouse mdr gene family, mdr1 and mdr3, can independently confer multidrug resistance in the cell lines examined.

1990 ◽  
Vol 10 (4) ◽  
pp. 1642-1651
Author(s):  
M Raymond ◽  
E Rose ◽  
D E Housman ◽  
P Gros

The mouse mdr gene family consists of three distinct genes (mdr1, mdr2, and mdr3), for which we have isolated full-length cDNA clones. cDNA subfragments corresponding to discrete regions showing little sequence conservation among the three mdr genes were used as gene-specific DNA probes in hybridization experiments. Long-range mapping by pulse-field gel electrophoresis indicated that the three mdr genes are closely linked on a genomic DNA segment of approximately 625 kilobases. The gene order and direction of transcription of the three genes were determined and indicate the arrangement (5') mdr3 (3')-(5') mdr1 (3')-(3') mdr2 (5'). Southern blotting analyses of genomic DNA from a panel of independently derived multidrug-resistant cell lines identified mdr gene amplification in 10 of 12 cell lines studied. In individual cell lines showing gene amplification, the copy number of each of the three mdr genes was identical, suggesting that the three mdr genes became amplified as part of a single amplicon in these cells. Although increased expression of all three mdr genes was detected in 2 of 12 cell lines tested, multidrug resistance was associated in 10 of 12 lines with the independent overexpression of either mdr1 (7 of 12) or mdr3 (3 of 12) but not mdr2. mdr1 overexpression was consistently associated with gene amplification, while increased mdr3 expression was detected in certain cell lines that did not show gene amplification. Increased levels of mdr1 mRNA were linked to the overexpression of a P glycoprotein of apparent molecular weight 180,000 to 200,000, whereas increased mdr3 expression resulted in increased expression of a P glycoprotein of molecular weight 160,000 to 180,000. Our results suggest that at least two members of the mouse mdr gene family, mdr1 and mdr3, can independently confer multidrug resistance in the cell lines examined.


1989 ◽  
Vol 9 (9) ◽  
pp. 3808-3820 ◽  
Author(s):  
J E Chin ◽  
R Soffir ◽  
K E Noonan ◽  
K Choi ◽  
I B Roninson

The human MDR (P-glycoprotein) gene family is known to include two members, MDR1 and MDR2. The product of the MDR1 gene, which is responsible for resistance to different cytotoxic drugs (multidrug resistance), appears to serve as an energy-dependent efflux pump for various lipophilic compounds. The function of the MDR2 gene remains unknown. We have examined the structure of the human MDR gene family by Southern hybridization of DNA from different multidrug-resistant cell lines with subfragments of MDR1 cDNA and by cloning and sequencing of genomic fragments. We have found no evidence for any other cross-hybridizing MDR genes. The sequence of two exons of the MDR2 gene was determined from genomic clones. Hybridization with single-exon probes showed that the human MDR1 gene is closely related to two genes in mouse and hamster DNA, whereas MDR2 corresponds to one rodent gene. The human MDR locus was mapped by field-inversion gel electrophoresis, and both MDR genes were found to be linked within 330 kilobases. The expression patterns of the human MDR genes were examined by enzymatic amplification of cDNA. In multidrug-resistant cell lines, increased expression of MDR1 mRNA was paralleled by a smaller increase in the levels of MDR2 mRNA. In normal human tissues, MDR2 was coexpressed with MDR1 in the liver, kidney, adrenal gland, and spleen. MDR1 expression was also detected in colon, lung, stomach, esophagus, muscle, breast, and bladder.


1989 ◽  
Vol 9 (9) ◽  
pp. 3808-3820
Author(s):  
J E Chin ◽  
R Soffir ◽  
K E Noonan ◽  
K Choi ◽  
I B Roninson

The human MDR (P-glycoprotein) gene family is known to include two members, MDR1 and MDR2. The product of the MDR1 gene, which is responsible for resistance to different cytotoxic drugs (multidrug resistance), appears to serve as an energy-dependent efflux pump for various lipophilic compounds. The function of the MDR2 gene remains unknown. We have examined the structure of the human MDR gene family by Southern hybridization of DNA from different multidrug-resistant cell lines with subfragments of MDR1 cDNA and by cloning and sequencing of genomic fragments. We have found no evidence for any other cross-hybridizing MDR genes. The sequence of two exons of the MDR2 gene was determined from genomic clones. Hybridization with single-exon probes showed that the human MDR1 gene is closely related to two genes in mouse and hamster DNA, whereas MDR2 corresponds to one rodent gene. The human MDR locus was mapped by field-inversion gel electrophoresis, and both MDR genes were found to be linked within 330 kilobases. The expression patterns of the human MDR genes were examined by enzymatic amplification of cDNA. In multidrug-resistant cell lines, increased expression of MDR1 mRNA was paralleled by a smaller increase in the levels of MDR2 mRNA. In normal human tissues, MDR2 was coexpressed with MDR1 in the liver, kidney, adrenal gland, and spleen. MDR1 expression was also detected in colon, lung, stomach, esophagus, muscle, breast, and bladder.


1990 ◽  
Vol 10 (4) ◽  
pp. 1652-1663
Author(s):  
A Devault ◽  
P Gros

We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities.


1989 ◽  
Vol 59 (5) ◽  
pp. 682-685 ◽  
Author(s):  
G Capranico ◽  
P De Isabella ◽  
C Castelli ◽  
R Supino ◽  
G Parmiani ◽  
...  

1990 ◽  
Vol 10 (4) ◽  
pp. 1652-1663 ◽  
Author(s):  
A Devault ◽  
P Gros

We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities.


1997 ◽  
Vol 53 (12) ◽  
pp. 1855-1866 ◽  
Author(s):  
Baukelien van Triest ◽  
Herbert M. Pinedo ◽  
Frank Telleman ◽  
Clasina L. van der Wilt ◽  
Gerrit Jansen ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
S. Mohana ◽  
M. Ganesan ◽  
N. Rajendra Prasad ◽  
D. Ananthakrishnan ◽  
D. Velmurugan

An amendment to this paper has been published and can be accessed via the original article.


Sign in / Sign up

Export Citation Format

Share Document