scholarly journals Cloning of a growth arrest-specific and transforming growth factor beta-regulated gene, TI 1, from an epithelial cell line.

1991 ◽  
Vol 11 (10) ◽  
pp. 5338-5345 ◽  
Author(s):  
B Kallin ◽  
R de Martin ◽  
T Etzold ◽  
V Sorrentino ◽  
L Philipson

By cDNA cloning and differential screening, five genes that are regulated by transforming growth factor beta (TGF beta) in mink lung epithelial cells were identified. A novel membrane protein gene, TI 1, was identified which was downregulated by TGF beta and serum in quiescent cells. In actively growing cells, the TI 1 gene is rapidly and transiently induced by TGF beta, and it is overexpressed in the presence of protein synthesis inhibitors. It appears to be related to a family of transmembrane glycoproteins that are expressed on lymphocytes and tumor cells. The four other genes were all induced by TGF beta and correspond to the genes of collagen alpha type I, fibronectin, plasminogen activator inhibitor 1, and the monocyte chemotactic cell-activating factor (JE gene) previously shown to be TGF beta regulated.

1991 ◽  
Vol 11 (10) ◽  
pp. 5338-5345
Author(s):  
B Kallin ◽  
R de Martin ◽  
T Etzold ◽  
V Sorrentino ◽  
L Philipson

By cDNA cloning and differential screening, five genes that are regulated by transforming growth factor beta (TGF beta) in mink lung epithelial cells were identified. A novel membrane protein gene, TI 1, was identified which was downregulated by TGF beta and serum in quiescent cells. In actively growing cells, the TI 1 gene is rapidly and transiently induced by TGF beta, and it is overexpressed in the presence of protein synthesis inhibitors. It appears to be related to a family of transmembrane glycoproteins that are expressed on lymphocytes and tumor cells. The four other genes were all induced by TGF beta and correspond to the genes of collagen alpha type I, fibronectin, plasminogen activator inhibitor 1, and the monocyte chemotactic cell-activating factor (JE gene) previously shown to be TGF beta regulated.


1991 ◽  
Vol 11 (10) ◽  
pp. 4952-4958
Author(s):  
A Zentella ◽  
F M Weis ◽  
D A Ralph ◽  
M Laiho ◽  
J Massagué

The growth-suppressive function of the retinoblastoma susceptibility gene product, RB, has been implicated in the mediation of growth inhibition and negative regulation of certain proliferation related genes by transforming growth factor-beta 1 (TGF-beta 1). Early gene responses to TGF-beta 1 were examined in order to determine their dependence on the cell cycle and on the growth-suppressive function of RB. TGF-beta 1, which rapidly elevates the steady-state level of junB and PAI-1 mRNAs and decreases that of c-myc mRNA, induces these responses in S-phase populations of Mv1Lu lung epithelial cells containing RB in a phosphorylated state. Since in this state RB is presumed to lack growth-suppressive activity, the response to TGF-beta 1 was also examined in DU145 human prostate carcinoma cells whose mutant RB product lacks growth-suppressive function. In these cells, TGF-beta 1 also decreases c-myc expression at the transcription initiation level. These results suggests that the c-myc, junB, and PAI-1 responses to TGF-beta 1 are not restricted to the G1 phase of the cell cycle and that down-regulation of c-myc expression by TGF-beta 1 can occur through a mechanism independent from the growth-suppressive function of RB.


1987 ◽  
Vol 165 (1) ◽  
pp. 251-256 ◽  
Author(s):  
A E Postlethwaite ◽  
J Keski-Oja ◽  
H L Moses ◽  
A H Kang

Transforming growth factor beta (TGF-beta) is a potent chemoattractant in vitro for human dermal fibroblasts. Intact disulfide and perhaps the dimeric structure of TGF-beta is essential for its ability to stimulate chemotactic migration of fibroblasts, since reduction with 2-ME results in a marked loss of its potency as a chemoattractant. Although epidermal growth factor (EGF) appears to be capable of modulating some effects of TGF-beta, it does not alter the chemotactic response of fibroblasts to TGF-beta. Specific polyvalent rabbit antibodies to homogeneously pure TGF-beta block its chemotactic activity but has no effect on the other chemoattractants tested (platelet-derived growth factor, fibronectin, and denatured type I collagen). Since TGF-beta is secreted by a variety of neoplastic and normal cells including platelets, monocytes/macrophages, and lymphocytes, it may play a critical role in vivo in embryogenesis, host response to tumors, and the repair response that follows damage to tissues by immune and nonimmune reactions.


1991 ◽  
Vol 11 (10) ◽  
pp. 4952-4958 ◽  
Author(s):  
A Zentella ◽  
F M Weis ◽  
D A Ralph ◽  
M Laiho ◽  
J Massagué

The growth-suppressive function of the retinoblastoma susceptibility gene product, RB, has been implicated in the mediation of growth inhibition and negative regulation of certain proliferation related genes by transforming growth factor-beta 1 (TGF-beta 1). Early gene responses to TGF-beta 1 were examined in order to determine their dependence on the cell cycle and on the growth-suppressive function of RB. TGF-beta 1, which rapidly elevates the steady-state level of junB and PAI-1 mRNAs and decreases that of c-myc mRNA, induces these responses in S-phase populations of Mv1Lu lung epithelial cells containing RB in a phosphorylated state. Since in this state RB is presumed to lack growth-suppressive activity, the response to TGF-beta 1 was also examined in DU145 human prostate carcinoma cells whose mutant RB product lacks growth-suppressive function. In these cells, TGF-beta 1 also decreases c-myc expression at the transcription initiation level. These results suggests that the c-myc, junB, and PAI-1 responses to TGF-beta 1 are not restricted to the G1 phase of the cell cycle and that down-regulation of c-myc expression by TGF-beta 1 can occur through a mechanism independent from the growth-suppressive function of RB.


1991 ◽  
Vol 11 (10) ◽  
pp. 5222-5228 ◽  
Author(s):  
S J Kim ◽  
T S Winokur ◽  
H D Lee ◽  
D Danielpour ◽  
K Y Kim ◽  
...  

Human T-cell lymphotropic virus type I (HTLV-I) has been associated with an adult form of T-cell leukemia as well as tropical spastic paraparesis, a neurodegenerative disease. Adult T-cell leukemia patients express high levels of the type 1 isoform of transforming growth factor-beta (TGF-beta 1), which is mediated by the effects of the HTLV-I Tax transactivator protein on the TGF-beta 1 promoter. To understand further the regulation of TGF-beta 1 expression by Tax, we examined its expression in transgenic mice carrying the HTLV-I tax gene. We show that tumors from these mice and other tissues, such as submaxillary glands and skeletal muscle, which express high levels of tax mRNA selectively express high levels of TGF-beta 1 mRNA and protein. Moreover, TGF-beta 1 significantly stimulated the incorporation of tritiated thymidine into one of three cell lines derived from neurofibromas of tax-transgenic mice, which suggests that the excessive production of TGF-beta 1 may play a role in tumorigenesis and that these mice may serve as a useful model for studying the biological effects of TGF-beta in vivo.


1990 ◽  
Vol 110 (6) ◽  
pp. 2209-2219 ◽  
Author(s):  
G B Silberstein ◽  
P Strickland ◽  
S Coleman ◽  
C W Daniel

Exogenous transforming growth factor beta (TGF-beta 1) was shown in earlier studies to reversibly inhibit mouse mammary ductal growth. Using small plastic implants to treat regions of developing mammary glands in situ, we now report that TGF-beta 1 growth inhibition is associated with an ectopic accumulation of type I collagen messenger RNA and protein, as well as the glycosaminoglycan, chondroitin sulfate. Both macromolecules are normal components of the ductal extracellular matrix, which, under the influence of exogenous TGF-beta 1, became unusually concentrated immediately adjacent to the epithelial cells at the tip of the ductal growth points, the end buds. Stimulation of extracellular matrix was confined to aggregations of connective tissue cells around affected end buds and was not present around the TGF-beta 1 implants themselves, indicating that the matrix effect was epithelium dependent. Ectopic matrix synthesis was specific for TGF-beta 1 insofar as it was absent at ducts treated with other growth inhibitors, or at ducts undergoing normal involution in response to endogenous regulatory processes. These findings are consistent with the matrix-stimulating properties of TGF-beta 1 reported for other systems, but differ in their strict dependence upon epithelium. A possible role for endogenous TGF-beta 1 in modulating a mammary epithelium-stroma interaction is suggested.


1991 ◽  
Vol 11 (9) ◽  
pp. 4490-4496
Author(s):  
M Centrella ◽  
T L McCarthy ◽  
E Canalis

Transforming growth factor beta (TGF-beta) enhances replication and bone matrix protein synthesis and associates with distinct binding sites in osteoblast-enriched cultures from fetal rat bone. In the organism high levels of or sustained exposure to glucocorticoids alters bone cell activity and decreases bone mass, effects that may be mediated in part by changes in local TGF-beta actions in skeletal tissue. Preexposure of osteoblast-enriched cultures to 100 nM cortisol reduced the stimulatory effects of TGF-beta 1 on DNA and collagen synthesis by 40 to 50%. Binding studies showed that cortisol moderately enhanced total TGF-beta 1 binding, but chemical cross-linking and polyacrylamide gel electrophoretic analysis revealed an increase only within Mr 250,000 (type III) TGF-beta-binding complexes, which are thought to represent extracellular TGF-beta storage sites. In contrast, a decrease in TGF-beta 1 binding was detected in Mr 65,000 (type I) and 85,000 (type II) complexes, which have been implicated as signal-transducing TGF-beta receptors. Our present studies therefore indicate that glucocorticoids can decrease the anabolic effects of TGF-beta 1 in bone, and these may occur in part by a redistribution of its binding toward extracellular matrix storage sites. Alterations of this sort could contribute to bone loss associated with glucocorticoid excess.


Sign in / Sign up

Export Citation Format

Share Document