scholarly journals Binding sites of the 9- and 14-kilodalton heterodimeric protein subunit of the signal recognition particle (SRP) are contained exclusively in the Alu domain of SRP RNA and contain a sequence motif that is conserved in evolution.

1991 ◽  
Vol 11 (8) ◽  
pp. 3949-3959 ◽  
Author(s):  
K Strub ◽  
J Moss ◽  
P Walter

The mammalian signal recognition particle (SRP) is a small cytoplasmic ribonucleoprotein required for the cotranslational targeting of secretory proteins to the endoplasmic reticulum membrane. The heterodimeric protein subunit SRP9/14 was previously shown to be essential for SRP to cause pausing in the elongation of secretory protein translation. RNase protection and filter binding experiments have shown that binding of SRP9/14 to SRP RNA depends solely on sequences located in a domain of SRP RNA that is strongly homologous to the Alu family of repetitive DNA sequences. In addition, the use of hydroxyl radicals, as RNA-cleaving reagents, has revealed four distinct regions in this domain that are in close contact with SRP9/14. Surprisingly, the nucleotide sequence in one of these contact sites, predicted to be mostly single stranded, was found to be extremely conserved in SRP RNAs of evolutionarily distant organisms ranging from eubacteria and archaebacteria to yeasts and higher eucaryotic cells. This finding suggests that SRP9/14 homologs may also exist in these organisms, where they possibly contribute to the regulation of protein synthesis similar to that observed for mammalian SRP in vitro.

1991 ◽  
Vol 11 (8) ◽  
pp. 3949-3959
Author(s):  
K Strub ◽  
J Moss ◽  
P Walter

The mammalian signal recognition particle (SRP) is a small cytoplasmic ribonucleoprotein required for the cotranslational targeting of secretory proteins to the endoplasmic reticulum membrane. The heterodimeric protein subunit SRP9/14 was previously shown to be essential for SRP to cause pausing in the elongation of secretory protein translation. RNase protection and filter binding experiments have shown that binding of SRP9/14 to SRP RNA depends solely on sequences located in a domain of SRP RNA that is strongly homologous to the Alu family of repetitive DNA sequences. In addition, the use of hydroxyl radicals, as RNA-cleaving reagents, has revealed four distinct regions in this domain that are in close contact with SRP9/14. Surprisingly, the nucleotide sequence in one of these contact sites, predicted to be mostly single stranded, was found to be extremely conserved in SRP RNAs of evolutionarily distant organisms ranging from eubacteria and archaebacteria to yeasts and higher eucaryotic cells. This finding suggests that SRP9/14 homologs may also exist in these organisms, where they possibly contribute to the regulation of protein synthesis similar to that observed for mammalian SRP in vitro.


1989 ◽  
Vol 109 (6) ◽  
pp. 3223-3230 ◽  
Author(s):  
B C Hann ◽  
M A Poritz ◽  
P Walter

We have isolated and sequenced genes from Saccharomyces cerevisiae (SRP54SC) and Schizosaccharomyces pombe (SRP54sp) encoding proteins homologous to both the 54-kD protein subunit (SRP54mam) of the mammalian signal recognition particle (SRP) and the product of a gene of unknown function in Escherichia coli, ffh (Römisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Nature (Lond.). 340:478-482; Bernstein H. D., M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, P. Walter. 1989. Nature (Lond.). 340:482-486). To accomplish this we took advantage of short stretches of conserved sequence between ffh and SRP54mam and used the polymerase chain reaction (PCR) to amplify fragments of the homologous yeast genes. The DNA sequences predict proteins for SRP54sc and SRP54sp that are 47% and 52% identical to SRP54mam, respectively. Like SRP54mam and ffh, both predicted yeast proteins contain a GTP binding consensus sequence in their NH2-terminal half (G-domain), and methionine-rich sequences in their COOH-terminal half (M-domain). In contrast to SRP54mam and ffh the yeast proteins contain additional Met-rich sequences inserted at the COOH-terminal portion of the M-domain. SRP54sp contains a 480-nucleotide intron located 78 nucleotides from the 5' end of the open reading frame. Although the function of the yeast homologues is unknown, gene disruption experiments in S. cerevisiae show that the gene is essential for growth. The identification of SRP54sc and SRP54sp provides the first evidence for SRP related proteins in yeast.


1990 ◽  
Vol 10 (2) ◽  
pp. 777-784
Author(s):  
K Strub ◽  
P Walter

The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, plays an essential role in targeting secretory proteins to the rough endoplasmic reticulum membrane. In addition to the targeting function, SRP contains an elongation arrest or pausing function. This function is carried out by the Alu domain, which consists of two proteins, SRP9 and SRP14, and the portion of SRP (7SL) RNA which is homologous to the Alu family of repetitive sequences. To study the assembly pathway of the components in the Alu domain, we have isolated a cDNA clone of SRP9, in addition to a previously obtained cDNA clone of SRP14. We show that neither SRP9 nor SRP14 alone interacts specifically with SRP RNA. Rather, the presence of both proteins is required for the formation of a stable RNA-protein complex. Furthermore, heterodimerization of SRP9 and SRP14 occurs in the absence of SRP RNA. Since a partially reconstituted SRP lacking SRP9 and SRP14 [SRP(-9/14)] is deficient in the elongation arrest function, it follows from our results that both proteins are required to assemble a functional domain. In addition, SRP9 and SRP14 synthesized in vitro from synthetic mRNAs derived from their cDNA clones restore elongation arrest activity to SRP(-9/14).


2001 ◽  
Vol 114 (19) ◽  
pp. 3479-3485 ◽  
Author(s):  
Kellie A. Dean ◽  
Oliver von Ahsen ◽  
Dirk Görlich ◽  
Howard M. Fried

The signal recognition particle (SRP) is a cytoplasmic RNA-protein complex that targets proteins to the rough endoplasmic reticulum. Although SRP functions in the cytoplasm, RNA microinjection and cDNA transfection experiments in animal cells, as well as genetic analyses in yeast, have indicated that SRP assembles in the nucleus. Nonetheless, the mechanisms responsible for nuclear-cytoplasmic transport of SRP RNA and SRP proteins are largely unknown. Here we show that the 19 kDa protein subunit of mammalian SRP, SRP19, was efficiently imported into the nucleus in vitro by two members of the importin β superfamily of transport receptors, importin 8 and transportin; SRP19 was also imported less efficiently by several other members of the importin β family. Although transportin is known to import a variety of proteins, SRP19 import is the first function assigned to importin 8. Furthermore, we show that a significant pool of endogenous SRP19 is located in the nucleus, as well as the nucleolus. Our results show that at least one mammalian SRP protein is specifically imported into the nucleus, by members of the importin β family of transport receptors, and the findings add additional evidence for nuclear assembly of SRP.


1990 ◽  
Vol 10 (2) ◽  
pp. 777-784 ◽  
Author(s):  
K Strub ◽  
P Walter

The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, plays an essential role in targeting secretory proteins to the rough endoplasmic reticulum membrane. In addition to the targeting function, SRP contains an elongation arrest or pausing function. This function is carried out by the Alu domain, which consists of two proteins, SRP9 and SRP14, and the portion of SRP (7SL) RNA which is homologous to the Alu family of repetitive sequences. To study the assembly pathway of the components in the Alu domain, we have isolated a cDNA clone of SRP9, in addition to a previously obtained cDNA clone of SRP14. We show that neither SRP9 nor SRP14 alone interacts specifically with SRP RNA. Rather, the presence of both proteins is required for the formation of a stable RNA-protein complex. Furthermore, heterodimerization of SRP9 and SRP14 occurs in the absence of SRP RNA. Since a partially reconstituted SRP lacking SRP9 and SRP14 [SRP(-9/14)] is deficient in the elongation arrest function, it follows from our results that both proteins are required to assemble a functional domain. In addition, SRP9 and SRP14 synthesized in vitro from synthetic mRNAs derived from their cDNA clones restore elongation arrest activity to SRP(-9/14).


Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 101-104 ◽  
Author(s):  
Jan Timo Grotwinkel ◽  
Klemens Wild ◽  
Bernd Segnitz ◽  
Irmgard Sinning

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
André Plagens ◽  
Michael Daume ◽  
Julia Wiegel ◽  
Lennart Randau

Signal recognition particles (SRPs) are universal ribonucleoprotein complexes found in all three domains of life that direct the cellular traffic and secretion of proteins. These complexes consist of SRP proteins and a single, highly structured SRP RNA. Canonical SRP RNA genes have not been identified for some Thermoproteus species even though they contain SRP19 and SRP54 proteins. Here, we show that genome rearrangement events in Thermoproteus tenax created a permuted SRP RNA gene. The 5'- and 3'-termini of this SRP RNA are located close to a functionally important loop present in all known SRP RNAs. RNA-Seq analyses revealed that these termini are ligated together to generate circular SRP RNA molecules that can bind to SRP19 and SRP54. The circularization site is processed by the tRNA splicing endonuclease. This moonlighting activity of the tRNA splicing machinery permits the permutation of the SRP RNA and creates highly stable and functional circular RNA molecules.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1161-C1161
Author(s):  
Irmgard Sinning

More than 25% of the cellular proteome comprise membrane proteins that have to be inserted into the correct target membrane. Most membrane proteins are delivered to the membrane by the signal recognition particle (SRP) pathway which relies on the recognition of an N-terminal signal sequence. In contrast to this co-translational mechanism, which avoids problems due to the hydrophobic nature of the cargo proteins, tail-anchored (TA) membrane proteins utilize a post-translational mechanism for membrane insertion – the GET pathway (guided entry of tail-anchored membrane proteins). The SRP and GET pathways are both regulated by GTP and ATP binding proteins of the SIMIBI family. However, in the SRP pathway the SRP RNA plays a unique regulatory role. Recent insights into eukaryotic SRP will be discussed.


Sign in / Sign up

Export Citation Format

Share Document