The plant amino acid mimosine may inhibit initiation at origins of replication in Chinese hamster cells

1992 ◽  
Vol 12 (10) ◽  
pp. 4375-4383
Author(s):  
P J Mosca ◽  
P A Dijkwel ◽  
J L Hamlin

An understanding of replication initiation in mammalian cells has been hampered by the lack of mutations and/or inhibitors that arrest cells just prior to entry into the S period. The plant amino acid mimosine has recently been suggested to inhibit cells at a regulatory step in late G1. We have examined the effects of mimosine on cell cycle traverse in the mimosine [corrected]-resistant CHO cell line CHOC 400. When administered to cultures for 14 h after reversal of a G0 block, the drug appears to arrest the population at the G1/S boundary, and upon its removal cells enter the S phase in a synchronous wave. However, when methotrexate is administered to an actively dividing asynchronous culture, cells are arrested not only at the G1/S interface but also in early and middle S phase. Most interestingly, two-dimensional gel analysis of replication intermediates in the initiation locus of the amplified dihydrofolate reductase domain suggests that mimosine may actually inhibit initiation. Thus, this drug represents a new class of inhibitors that may open a window on regulatory events occurring at individual origins of replication.

1992 ◽  
Vol 12 (10) ◽  
pp. 4375-4383 ◽  
Author(s):  
P J Mosca ◽  
P A Dijkwel ◽  
J L Hamlin

An understanding of replication initiation in mammalian cells has been hampered by the lack of mutations and/or inhibitors that arrest cells just prior to entry into the S period. The plant amino acid mimosine has recently been suggested to inhibit cells at a regulatory step in late G1. We have examined the effects of mimosine on cell cycle traverse in the mimosine [corrected]-resistant CHO cell line CHOC 400. When administered to cultures for 14 h after reversal of a G0 block, the drug appears to arrest the population at the G1/S boundary, and upon its removal cells enter the S phase in a synchronous wave. However, when methotrexate is administered to an actively dividing asynchronous culture, cells are arrested not only at the G1/S interface but also in early and middle S phase. Most interestingly, two-dimensional gel analysis of replication intermediates in the initiation locus of the amplified dihydrofolate reductase domain suggests that mimosine may actually inhibit initiation. Thus, this drug represents a new class of inhibitors that may open a window on regulatory events occurring at individual origins of replication.


2002 ◽  
Vol 283 (4) ◽  
pp. C1009-C1024 ◽  
Author(s):  
Nawfal W. Istfan ◽  
Zhi-Yi Chen ◽  
Sybille Rex

Fish oils (FOs) have been noted to reduce growth and proliferation of certain tumor cells, effects usually attributed to the content of polyunsaturated fatty acids of the n–3 family, which are thought to modulate cellular signaling pathways. We investigated the influence of FO on cell cycle kinetics of cultured Chinese hamster ovary cells. Exponentially growing cells were labeled with 5-bromo-2′-deoxyuridine (BrdU) and analyzed by flow cytometry after 5-day treatment with exogenous fat. Bivariate BrdU-DNA analysis indicated slower progression through S phase and thus longer S phase duration time in FO- but not corn oil-treated or control cells. We hypothesize that FO treatment might interfere with spatial/temporal organization of replication origins. Therefore, we mapped the well-characterized replication origin ori-β downstream of the dihydrofolate reductase gene with the nascent strand length assay. Three DNA marker segments with known positions relative to this origin were amplified by PCR. By quantitatively assessing DNA length of the fragments in all fractions containing these markers, the location of ori-β was established. In control or corn oil-treated cells, the location of ori-β was consistent with previous studies. However, in FO-treated cells, DNA replication appears to start from a new site located farther upstream from ori-β, suggesting a different replication initiation pattern. This study suggests novel mechanism(s) by which fats affect cell proliferation and DNA replication in mammalian cells.


1987 ◽  
Vol 7 (7) ◽  
pp. 2444-2450
Author(s):  
G Orfanoudakis ◽  
M Baltzinger ◽  
D Meyer ◽  
N Befort ◽  
J P Ebel ◽  
...  

Zajdela hepatoma culture cells (ZHC) and mouse embryo fibroblasts (Swiss 3T3) were synchronized in G1 or S phase by serum deprivation and aphidicolin treatment, respectively, to study the variations in adenylyl nucleotide (Ap4X) pool size during the progress of the cell cycle. Only minor variations, which never exceeded a factor of 2, were observed when the Ap4X concentrations were expressed on a cellular basis. The variations were found to be strictly parallel to the ATP variations. Upon release from an aphidicolin block, the minor variations of Ap4X followed DNA synthesis and preceded cytokinesis. When the nucleotide content was compared with the amount of proteins, the faint specific cell cycle changes were almost completely damped when the cells were synchronized by serum deprivation, but remained practically unchanged in the case of aphidicolin synchronization. These results suggest that the observed variations could reflect the accumulation of some nucleotides before cell division. It is not clear yet whether the variation in Ap4X concentration is significant by itself or is simply a phenomenon resulting from changes in the ATP pool.


1994 ◽  
Vol 107 (1) ◽  
pp. 253-265 ◽  
Author(s):  
I.T. Todorov ◽  
R. Pepperkok ◽  
R.N. Philipova ◽  
S.E. Kearsey ◽  
W. Ansorge ◽  
...  

Molecular cloning and characterisation of a human nuclear protein designated BM28 is reported. On the amino acid level this 892 amino acid protein, migrating on SDS-gels as a 125 kDa polypeptide, shares areas of significant similarity with a recently defined family of early S phase proteins. The members of this family, the Saccharomyces cerevisiae Mcm2p, Mcm3p, Cdc46p/Mcm5p, the Schizosaccharomyces pombe Cdc21p and the mouse protein P1 are considered to be involved in the onset of DNA replication. The highest similarity was found with Mcm2p (42% identity over the whole length and higher than 75% over a conservative region of 215 amino acid residues), suggesting that BM28 could represent the human homologue of the S. cerevisiae MCM2. Using antibodies raised against the recombinant BM28 the corresponding antigen was found to be localised in the nuclei of various mammalian cells. Microinjection of anti-BM28 antibody into synchronised mouse NIH3T3 or human HeLa cells presents evidence for the involvement of the protein in cell cycle progression. When injected in G1 phase the anti-BM28 antibody inhibits the onset of subsequent DNA synthesis as tested by the incorporation of bromodeoxyuridine. Microinjection during the S phase had no effect on DNA synthesis, but inhibits cell division. The data suggest that the nuclear protein BM28 is required for two events of the cell cycle, for the onset of DNA replication and for cell division.


1992 ◽  
Vol 12 (9) ◽  
pp. 3715-3722 ◽  
Author(s):  
P A Dijkwel ◽  
J L Hamlin

In previous studies, we used two complementary two-dimensional gel electrophoretic methods to examine replication intermediates in the 240-kb amplified dihydrofolate reductase (DHFR) domain of methotrexate-resistant CHOC 400 cells (J. P. Vaughn, P. A. Dijkwel, and J. L. Hamlin, Cell 61:1075-1087, 1990). Surprisingly, in both asynchronous and early-S-phase cultures, initiation bubbles were detected in several contiguous fragments from a previously defined 28-kb initiation locus. However, because of the low levels of bubblelike structures observed on gels, it has been suggested that these structures might represent artifacts, possibly unrelated to replication per se. In this study, we have achieved much more synchronous entry into S phase by using a novel inhibitor and have isolated replication intermediates by a new procedure that largely eliminates branch migration and shear. Under these conditions, we find that (i) the relative number of bubblelike structures detected in fragments from the initiation locus is markedly increased, (ii) bubbles are detected at multiple sites scattered throughout the region lying between the DHFR and 2BE2121 genes, and (iii) bubbles appear and disappear in this region with the kinetics expected of an early-firing origin. These data strengthen the proposal that in vivo, initiation can occur at any of a large number of sites scattered throughout a broad zone in the DHFR domain.


1969 ◽  
Vol 43 (2) ◽  
pp. 207-219 ◽  
Author(s):  
Robert R. Klevecz

Chinese hamster cells were synchronized by the Colcemid-selection system. In cells with a division cycle time of 11.5–12 hr, the activity of the enzyme lactate dehydrogenase (LDH) underwent marked oscillations with a 3.5-hr period. Precipitation of labeled LDH enzyme with specific antibody indicated that the enzyme activity changes were the result of intermittent enzyme synthesis and relatively constant degradation. Inhibition of normal DNA replication with 4 mM of thymidine, while reducing the amount of new enzyme synthesized, did not prevent oscillations from occurring. Similarly, actinomycin D (AcD) added at the time of synchronization allowed some new enzyme synthesis to proceed in an oscillatory manner. LDH synthesis went on at nearly normal rates when AcD was added in the middle of S phase. However, addition of cycloheximide to cultures at any time in the cycle caused an immediate drop in levels of activity and in enzyme protein. The half-life of LDH, calculated either from loss of enzyme activity or precipitable radioactivity in cycloheximide-treated cultures, was between 2 and 2.5 hr.


1990 ◽  
Vol 10 (11) ◽  
pp. 5814-5821
Author(s):  
P Pohjanpelto ◽  
E Hölttä

Genes of higher eucaryotic cells are considered to show only a limited response to nutritional stress. Here we show, however, that omission of a single essential amino acid from the medium caused a marked rise in the mRNA levels of c-myc, c-jun, junB and c-fos oncogenes and ornithine decarboxylase (ODC) in CHO cells. There was no general accumulation of mRNAs in amino acid-starved cells, since the gamma-actin, beta-tubulin, protein kinase C, RNA polymerase II, and glyceraldehyde-3-phosphate dehydrogenase mRNAs and the total poly(A)+ mRNA were not increased. The levels of c-myc, ODC, and c-jun mRNAs were elevated more by amino acid starvation than by inhibition of protein synthesis with cycloheximide, which is known to increase the levels of these mRNAs. Importantly, however, cycloheximide present during amino acid starvation reduced the rise in the levels of the mRNAs down to the level obtained with cycloheximide alone. This implies that protein synthesis is required for the accumulation of c-myc, ODC, and c-jun mRNAs in amino acid-deprived cells. The junB and c-fos mRNAs, instead, were increased to the same extent or less by amino acid starvation than by cycloheximide treatment. The accumulation of the c-myc mRNA in amino acid-starved cells was due to both stabilization of the mRNA and increase of its transcription. The rise in the c-jun mRNA level seemed to be caused merely by stabilization of the mRNA. Further, despite the inhibition of general protein synthesis, amino acid starvation led to an increase in the synthesis of c-myc polypeptide. The results suggest that mammalian cells have a specific mechanism for registering shortages of amino acids in order to make adjustments compatible with cellular growth.


1991 ◽  
Vol 11 (8) ◽  
pp. 3850-3859 ◽  
Author(s):  
P A Dijkwel ◽  
J P Vaughn ◽  
J L Hamlin

Two complementary two-dimensional gel electrophoretic techniques have recently been developed that allow initiation sites to be mapped with relative precision in eukaryotic genomes at least as complex as those of yeast and Drosophila melanogaster. We reported the first application of these mapping methods to a mammalian genome in a study on the amplified dihydrofolate reductase (DHFR) domain of the methotrexate-resistant CHO cell line CHOC 400 (J.P. Vaughn, P.A. Dijkwel, and J.L. Hamlin, Cell 61:1075-1087, 1990). Our results suggested that in this 240-kb domain, initiation of nascent DNA strands occurs at many sites within a 30- to 35-kb zone mapping immediately downstream from the DHFR gene. In the course of these studies, it was necessary to develop methods to stabilize replication intermediates against branch migration and shear. This report describes these stabilization methods in detail and presents a new enrichment protocol that extends the neutral/neutral two-dimensional gel mapping method to single-copy loci in mammalian cells. Preliminary analysis of replication intermediates purified from CHO cells by this method suggests that DNA synthesis may initiate at many sites within a broad zone in the single-copy DHFR locus as well.


Sign in / Sign up

Export Citation Format

Share Document