Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen

1992 ◽  
Vol 12 (7) ◽  
pp. 3149-3154
Author(s):  
S M Kang ◽  
W Tsang ◽  
S Doll ◽  
P Scherle ◽  
H S Ko ◽  
...  

Oct-2 is a transcription factor that binds specifically to octamer DNA motifs in the promoters of immunoglobulin and interleukin-2 genes. All tumor cell lines from the B-cell lineage and a few from the T-cell lineage express Oct-2. To address the role of Oct-2 in the T-cell lineage, we studied the expression of Oct-2 mRNA and protein in nontransformed human and mouse T cells. Oct-2 was found in CD4+ and CD8+ T cells prepared from human peripheral blood and in mouse lymph node T cells. In a T-cell clone specific for pigeon cytochrome c in the context of I-Ek, Oct-2 was induced by antigen stimulation, with the increase in Oct-2 protein seen first at 3 h after activation and continuing for at least 24 h. Oct-2 mRNA induction during antigen-driven T-cell activation was blocked by cyclosporin A, as well as by protein synthesis inhibitors. These results suggest that Oct-2 participates in transcriptional regulation during T-cell activation. The relatively delayed kinetics of Oct-2 induction suggests that Oct-2 mediates the changes in gene expression which occur many hours or days following antigen stimulation of T lymphocytes.

1992 ◽  
Vol 12 (7) ◽  
pp. 3149-3154 ◽  
Author(s):  
S M Kang ◽  
W Tsang ◽  
S Doll ◽  
P Scherle ◽  
H S Ko ◽  
...  

Oct-2 is a transcription factor that binds specifically to octamer DNA motifs in the promoters of immunoglobulin and interleukin-2 genes. All tumor cell lines from the B-cell lineage and a few from the T-cell lineage express Oct-2. To address the role of Oct-2 in the T-cell lineage, we studied the expression of Oct-2 mRNA and protein in nontransformed human and mouse T cells. Oct-2 was found in CD4+ and CD8+ T cells prepared from human peripheral blood and in mouse lymph node T cells. In a T-cell clone specific for pigeon cytochrome c in the context of I-Ek, Oct-2 was induced by antigen stimulation, with the increase in Oct-2 protein seen first at 3 h after activation and continuing for at least 24 h. Oct-2 mRNA induction during antigen-driven T-cell activation was blocked by cyclosporin A, as well as by protein synthesis inhibitors. These results suggest that Oct-2 participates in transcriptional regulation during T-cell activation. The relatively delayed kinetics of Oct-2 induction suggests that Oct-2 mediates the changes in gene expression which occur many hours or days following antigen stimulation of T lymphocytes.


1994 ◽  
Vol 302 (1) ◽  
pp. 119-123 ◽  
Author(s):  
M Los ◽  
W Dröge ◽  
K Schulze-Osthoff

Co-stimulation of T-lymphocytes by T-cell receptor (TcR) occupancy and activation of the CD28 surface molecule results in enhanced proliferation and interleukin 2 (IL-2) production. The increase in IL-2 gene expression triggered by CD28 involves a kappa B-like sequence in the 5′-regulatory region of the IL-2 promoter, called CD28-responsive element. Stimulation of T-cells by agonistic anti-CD28 antibodies in conjunction with phorbol 12-myristate 13-acetate (PMA)- or TcR-derived signals induces the enhanced activation of the transcription factor NF-kappa B. Here we report that CD28 engagement, however, exerts opposite effects on the transcription factor AP-1. Whereas anti-CD28 together with PMA increased the DNA binding and trans-activation activity of NF-kappa B, PMA-induced activation of AP-1 was significantly suppressed. The inhibitory effect exerted by anti-CD28 was observed at the level of DNA binding as well as in functional reporter-gene assays. These results suggest that the two transcription factors are independently regulated and may perform different functions during T-cell activation.


1998 ◽  
Vol 188 (9) ◽  
pp. 1575-1586 ◽  
Author(s):  
Loralee Haughn ◽  
Bernadine Leung ◽  
Lawrence Boise ◽  
André Veillette ◽  
Craig Thompson ◽  
...  

T cell activation and clonal expansion is the result of the coordinated functions of the receptors for antigen and interleukin (IL)-2. The protein tyrosine kinase p56lck is critical for the generation of signals emanating from the T cell antigen receptor (TCR) and has also been demonstrated to play a role in IL-2 receptor signaling. We demonstrate that an IL-2–dependent, antigen-specific CD4+ T cell clone is not responsive to anti-TCR induced growth when propagated in IL-2, but remains responsive to both antigen and CD3ε-specific monoclonal antibody. Survival of this IL-2–dependent clone in the absence of IL-2 was supported by overexpression of exogenous Bcl-xL. Culture of this clonal variant in the absence of IL-2 rendered it susceptible to anti-TCR–induced signaling, and correlated with the presence of kinase-active Lck associated with the plasma membrane. The same phenotype is observed in primary, resting CD4+ T cells. Furthermore, the presence of kinase active Lck associated with the plasma membrane correlates with the presence of ZAP 70–pp21ζ complexes in both primary T cells and T cell clones in circumstances of responsive anti-TCR signaling. The results presented demonstrate that IL-2 signal transduction results in the functional uncoupling of the TCR complex through altering the subcellular distribution of kinase-active Lck.


1997 ◽  
Vol 17 (11) ◽  
pp. 6437-6447 ◽  
Author(s):  
S Martínez-Martínez ◽  
P Gómez del Arco ◽  
A L Armesilla ◽  
J Aramburu ◽  
C Luo ◽  
...  

Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants.


2021 ◽  
Author(s):  
Zachary J Waldrip ◽  
Lyle Burdine ◽  
David K Harrison ◽  
Ana Clara Azevedo-Pouly ◽  
Aaron J Storey ◽  
...  

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known primarily for its function in DNA double-stranded break repair and non-homologous end joining (NHEJ). However, like other DNA damage repair kinases (DDR), DNA-PKcs also has a critical yet undefined role in immunity impacting both myeloid and lymphoid cell lineages spurring interest in targeting DNA-PKcs for therapeutic strategies in immune-related diseases. To gain insight into the function of DNA-PKcs within immune cells, we performed a quantitative phosphoproteomic screen in T cells to identify first order phosphorylation targets of DNA-PKcs. Results indicate that DNA-PKcs phosphorylates the transcription factor Egr1 (early growth response protein 1) at S301. Expression of Egr1 is induced early upon T cell activation and dictates T cell response by modulating expression of cytokines and key costimulatory molecules. Mutation of serine 301 to alanine via CRISPR-Cas9 resulted in increased proteasomal degradation of Egr1 and a decrease in Egr1-dependent transcription of IL2 (interleukin-2) in activated T cells. Our findings identify DNA-PKcs as a critical intermediary link between T cell activation and T cell fate and a novel phosphosite involved in regulating Egr1 activity.


1993 ◽  
Vol 177 (6) ◽  
pp. 1791-1796 ◽  
Author(s):  
F A Harding ◽  
J P Allison

The activation requirements for the generation of CD8+ cytotoxic T cells (CTL) are poorly understood. Here we demonstrate that in the absence of exogenous help, a CD28-B7 interaction is necessary and sufficient for generation of class I major histocompatibility complex-specific CTL. Costimulation is required only during the inductive phase of the response, and not during the effector phase. Transfection of the CD28 counter receptor, B7, into nonstimulatory P815 cells confers the ability to elicit P815-specific CTL, and this response can be inhibited by anti-CD28 Fab or by the chimeric B7-binding protein CTLA4Ig. Anti-CD28 monoclonal antibody (mAb) can provide a costimulatory signal to CD8+ T cells when the costimulatory capacity of splenic stimulators is destroyed by chemical fixation. CD28-mediated signaling provokes the release of interleukin 2 (IL-2) from the CD8+ CTL precursors, as anti-CD28 mAb could be substituted for by the addition of IL-2, and an anti-IL-2 mAb can block the generation of anti-CD28-induced CTL. CD4+ cells are not involved in the costimulatory response in the systems examined. We conclude that CD8+ T cell activation requires two signals: an antigen-specific signal mediated by the T cell receptor, and an additional antigen nonspecific signal provided via a CD28-B7 interaction.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


1994 ◽  
Vol 180 (3) ◽  
pp. 1159-1164 ◽  
Author(s):  
D Unutmaz ◽  
P Pileri ◽  
S Abrignani

We investigated whether human resting T cells could be activated to proliferate and display effector function in the absence of T cell receptor occupancy. We report that combination of interleukin 2 (IL-2), tumor necrosis factor alpha, and IL-6 activated highly purified naive (CD45RA+) and memory (CD45RO+) resting CD4+ T cells to proliferate. Under this condition, memory resting T cells could also display effector function as measured by lymphokine synthesis and help for immunoglobulin production by B cells. This novel Ag-independent pathway of T cell activation may play an important role in vivo in recruiting effector T cells at the site of immune response and in maintaining the clonal size of memory T cells in the absence of antigenic stimulation. Moreover, cytokines can induce proliferation of naive T cells without switch to memory phenotype and this may help the maintenance of the peripheral pool of naive T cells.


1994 ◽  
Vol 14 (12) ◽  
pp. 7933-7942
Author(s):  
R G Bryan ◽  
Y Li ◽  
J H Lai ◽  
M Van ◽  
N R Rice ◽  
...  

Optimal T-cell activation requires both an antigen-specific signal delivered through the T-cell receptor and a costimulatory signal which can be delivered through the CD28 molecule. CD28 costimulation induces the expression of multiple lymphokines, including interleukin 2 (IL-2). Because the c-Rel transcription factor bound to and activated the CD28 response element within the IL-2 promoter, we focused our study on the mechanism of CD28-mediated regulation of c-Rel in human peripheral blood T cells. We showed that CD28 costimulation accelerated the kinetics of nuclear translocation of c-Rel (and its phosphorylated form), p50 (NFKB1), and p65 (RelA). The enhanced nuclear translocation of c-Rel correlated with the stimulation of Il-2 production and T-cell proliferation by several distinct anti-CD28 monoclonal antibodies. This is explained at least in part by the long-term downregulation of I kappa B alpha following CD28 signalling as opposed to phorbol myristate acetate alone. Furthermore, we showed that the c-Rel-containing CD28-responsive complex is enhanced by, but not specific to, CD28 costimulation. Our results indicate that c-Rel is one of the transcription factors targeted by CD28 signalling.


2020 ◽  
Vol 8 (2) ◽  
pp. e001521
Author(s):  
Javier Arranz-Nicolás ◽  
Miguel Martin-Salgado ◽  
Cristina Rodríguez-Rodríguez ◽  
Rosa Liébana ◽  
Maria C Moreno-Ortiz ◽  
...  

BackgroundThe inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform.MethodsWe used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells.ResultsWe demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice.ConclusionsOur results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.


Sign in / Sign up

Export Citation Format

Share Document