scholarly journals Identification of the functional components of the Ras signaling pathway regulating pituitary cell-specific gene expression.

1994 ◽  
Vol 14 (3) ◽  
pp. 1553-1565 ◽  
Author(s):  
K E Conrad ◽  
J M Oberwetter ◽  
R Vaillancourt ◽  
G L Johnson ◽  
A Gutierrez-Hartmann

Ras, a small GTP-binding protein, is required for functional receptor tyrosine kinase signaling. Ultimately, Ras alters the activity of specific nuclear transcription factors and regulates novel patterns of gene expression. Using a rat prolactin promoter construct in transient transfection experiments, we show that both oncogenic Ras and activated forms of Raf-1 kinase selectively stimulated the cellular rat prolactin promoter in GH4 rat pituitary cells. We also show that the Ras signal is completely blocked by an expression vector encoding a dominant-negative Raf kinase. Additionally, using a molecular genetic approach, we determined that inhibitory forms of p42 mitogen-activated protein kinase and an Ets-2 transcription factor interfere with both the Ras and the Raf activation of the rat prolactin promoter. These findings define a functional requirement for these signaling constituents in the activation of the prolactin gene, a cell-specific gene which marks the lactotroph pituitary cell type. Further, this analysis allowed us to order the components in the Ras signaling pathway as it impinges on regulation of prolactin gene transcription as Ras-->Raf kinase-->mitogen-activated protein kinase-->Ets. In contrast, we show that intact c-Jun expression inhibited the Ras-induced activation of the prolactin promoter, defining it as a negative regulator of this pathway, whereas c-Jun was able to enhance the Ras activation of an AP-1-driven promoter in GH4 cells. These data show that c-Jun is not the nuclear mediator of the Ras signal for the highly specialized, pituitary cell-specific prolactin cellular promoter. Thus, we have defined a model system which provides an ideal paradigm for studying Ras/Raf signaling pathways and their effects on neuroendocrine cell-specific gene regulation.

1995 ◽  
Vol 15 (12) ◽  
pp. 6506-6512 ◽  
Author(s):  
J U Jung ◽  
R C Desrosiers

The STP-C488 oncogene of herpesvirus saimiri has transforming activity independent of the rest of the viral genome. We now demonstrate that STP-C488 associates with cellular ras in transformed cells. Mutations that disrupted this association with ras disrupted the transforming ability of the STP-C488 oncogene. Binding assays showed that STP-C488 was capable of competing with raf-1 for binding to ras. Expression of STP-C488 activated the ras signaling pathway as evidenced by a two- to fourfold increase in the ratio of ras-GTP to ras-GDP and by the constitutive activation of mitogen-activated protein kinase. Consistent with an activation of signaling through ras, STP-C488 expression induced ras-dependent neurite outgrowth in PC12 cells. STP-C488 is the first virus-encoded protein shown to achieve oncogenic transformation via association with cellular ras.


1997 ◽  
Vol 17 (7) ◽  
pp. 3547-3555 ◽  
Author(s):  
M B Ramocki ◽  
S E Johnson ◽  
M A White ◽  
C L Ashendel ◽  
S F Konieczny ◽  
...  

The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal muscle lineage by disrupting MRF function via a mechanism that is independent of the dimerization, DNA binding, and inherent transcriptional activation properties of the proteins. To investigate the intracellular signaling pathway(s) that mediates the inhibition of MRF-induced myogenesis by oncogenic Ras, we tested two transformation-defective H-Ras 12V effector domain variants for their ability to alter terminal differentiation. H-Ras 12V,35S retains the ability to activate the Raf/MEK/mitogen-activated protein (MAP) kinase cascade, whereas H-Ras 12V,40C is unable to interact directly with Raf-1 yet still influences other signaling intermediates, including Rac and Rho. Expression of each H-Ras 12V variant in C3H10T1/2 cells abrogates MyoD-induced activation of the complete myogenic program, suggesting that MAP kinase-dependent and -independent Ras signaling pathways individually block myogenesis in this model system. However, additional studies with constitutively activated Rac1 and RhoA proteins revealed no negative effects on MyoD-induced myogenesis. Similarly, treatment of Ras-inhibited myoblasts with the MEK1 inhibitor PD98059 revealed that elevated MAP kinase activity is not a significant contributor to the H-Ras 12V effect. These data suggest that an additional Ras pathway, distinct from the well-characterized MAP kinase and Rac/Rho pathways known to be important for the transforming function of activated Ras, is primarily responsible for the inhibition of myogenesis by H-Ras 12V.


Sign in / Sign up

Export Citation Format

Share Document