Sap1, a protein that binds to sequences required for mating-type switching, is essential for viability in Schizosaccharomyces pombe

1994 ◽  
Vol 14 (3) ◽  
pp. 2058-2065
Author(s):  
B Arcangioli ◽  
T D Copeland ◽  
A J Klar

The pattern of mating-type switching in cell pedigrees of the fission yeast Schizosaccharomyces pombe is dictated by the inheritance of specific DNA chains at the mating-type locus (mat1). The recombination event essential for switching is initiated by a site-specific double-strand break at mat1. The switch-activating protein, Sap1, binds in vitro to a mat1 cis-acting site that was shown earlier to be essential for efficient mating-type switching. We isolated the sap1 gene by using oligonucleotides corresponding to the amino acid sequence of purified Sap1 protein. The sequence of that gene predicted a 30-kDa protein with no significant homology to other canonical DNA-binding protein motifs. To facilitate its biochemical characterization, Sap1 was expressed in Escherichia coli. The protein expressed in bacteria displayed the same DNA-binding specificities as the protein purified from S. pombe. Interestingly, analysis of a sap1 null mutation showed that the gene is essential for growth even in a strain in which mating-type switching is prohibited because of a defect in generation of the double-strand break. Thus, the sap1 gene product implicated in mating-type switching is shown to be essential for cell viability.

1994 ◽  
Vol 14 (3) ◽  
pp. 2058-2065 ◽  
Author(s):  
B Arcangioli ◽  
T D Copeland ◽  
A J Klar

The pattern of mating-type switching in cell pedigrees of the fission yeast Schizosaccharomyces pombe is dictated by the inheritance of specific DNA chains at the mating-type locus (mat1). The recombination event essential for switching is initiated by a site-specific double-strand break at mat1. The switch-activating protein, Sap1, binds in vitro to a mat1 cis-acting site that was shown earlier to be essential for efficient mating-type switching. We isolated the sap1 gene by using oligonucleotides corresponding to the amino acid sequence of purified Sap1 protein. The sequence of that gene predicted a 30-kDa protein with no significant homology to other canonical DNA-binding protein motifs. To facilitate its biochemical characterization, Sap1 was expressed in Escherichia coli. The protein expressed in bacteria displayed the same DNA-binding specificities as the protein purified from S. pombe. Interestingly, analysis of a sap1 null mutation showed that the gene is essential for growth even in a strain in which mating-type switching is prohibited because of a defect in generation of the double-strand break. Thus, the sap1 gene product implicated in mating-type switching is shown to be essential for cell viability.


Genetics ◽  
1991 ◽  
Vol 129 (4) ◽  
pp. 1033-1042
Author(s):  
A J Klar ◽  
M J Bonaduce

Abstract Mitotic interconversion of the mating-type locus (mat1) of the fission yeast Schizosaccharomyces pombe is initiated by a double-strand break at mat1. The mat2 and mat3 loci act as nonrandom donors of genetic information for mat1 switching such that switches occur primarily (or only) to the opposite mat1 allele. Location of the mat1 "hot spot" for transposition should be contrasted with the "cold spot" of meiotic recombination located within the adjoining mat2-mat3 interval. That is, meiotic interchromosomal recombination in mat2, mat3 and the intervening 15-kilobase region does not occur at all. swi2 and swi6 switching-deficient mutants possess the normal level of double-strand break at mat1, yet they fail to switch efficiently. By testing for meiotic recombination in the cold spot, we found the usual lack of recombination in a swi2 mutant but a significant level of recombination in a swi6 mutant. Therefore, the swi6 gene function is required to keep the donor loci inert for interchromosomal recombination. This finding, combined with the additional result that switching primarily occurs intrachromosomally, suggests that the donor loci are made accessible for switching by folding them onto mat1, thus causing the cold spot of recombination.


1986 ◽  
Vol 6 (11) ◽  
pp. 3831-3837 ◽  
Author(s):  
M Jayaram

Double-strand breaks in DNA are known to promote recombination in Saccharomyces cerevisiae. Yeast mating type switching, which is a highly efficient gene conversion event, is apparently initiated by a site-specific double-strand break. The 2 micrograms circle site-specific recombinase, FLP, has been shown to make double-strand breaks in its substrate DNA. By using a hybrid 2 micrograms circle::Tn5 plasmid, a portion of which resembles, in its DNA organization, the active (MAT) and the silent (HML) yeast mating type loci, it is shown that FLP mediates a conversion event analogous to mating type switching. Whereas the FLP site-specific recombination is not dependent on the RAD52 gene product, the FLP-induced conversion is abolished in a rad52 background. The FLP-promoted conversion in vivo can be faithfully reproduced by making a double-stranded gap in vitro in the vicinity of the FLP site and allowing the gap to be repaired in vivo.


2020 ◽  
Author(s):  
Laetitia Maroc ◽  
Youfang Zhou-Li ◽  
Stéphanie Boisnard ◽  
Cécile Fairhead

AbstractMating-type switching is a complex mechanism that promotes sexual reproduction in Ascomycotina. In the model species Saccharomyces cerevisiae, mating-type switching is initiated by the Ho endonuclease that performs a site-specific double-strand break (DSB) at MAT, repaired by homologous recombination (HR) using one of the two silent mating type cassettes, HMLalpha and HMRa. The reasons why all the elements of the mating-type switching system have been conserved in some Ascomycotina, that do not show a sexual cycle nor mating-type switching, remain unknown. To gain insight on this phenomenon, we used the opportunistic pathogenic yeast Candida glabrata, phylogenetically close to S. cerevisiae, and for which no spontaneous and efficient mating-type switching has been observed. We have previously shown that expression of S. cerevisiae’s HO gene triggers mating-type switching in C. glabrata, but this leads to massive cell death. In addition, we unexpectedly found, that not only MAT but also HML was cut in this species, suggesting the formation of multiple chromosomal DSBs upon HO induction.We now report that HMR is also cut by S. cerevisiae’s Ho in wild-type strains of C. glabrata. To understand the link between mating-type switching and cell death in C. glabrata, we constructed strains mutated precisely at the Ho recognition sites. By mimicking S. cerevisiae’s situation, in which HML and HMR are protected from the cut, we unexpectedly find that one DSB at MAT is sufficient to induce cell death. We demonstrate that mating-type switching in C. glabrata can be triggered using CRISPR-Cas9, without high lethality. We also show that switching is Rad51-dependent, as in S. cerevisiae but that donor preference is not conserved in C. glabrata. Altogether, these results suggest that a DSB at MAT can be repaired by HR in C. glabrata, but that it is prevented by S. cerevisiae’s Ho.Author summaryMating-type switching is one of the strategies developed by fungi to promote crossing, sexual reproduction and propagation. This mechanism enables one haploid cell to give rise to a cell of the opposite mating-type so that they can mate together. It has been extensively studied in the model yeast S. cerevisiae in which it relies on a programmed double-strand break performed by the Ho endonuclease at the MAT locus which encodes the key regulators of sexual identity. Little is known about why the mating-type switching components have been conserved in species like C.glabrata, in which neither sexual reproduction nor mating-type switching is observed. We have previously shown that mating-type switching can be triggered, in C. glabrata, by expression of the HO gene from S. cerevisiae but this leads to massive cell death. We report here evidence toward a degeneration of the mating-type switching system in C. glabrata. We demonstrate that the DSB at MAT is only lethal when the Ho endonuclease performs the break, a situation unique to C. glabrata. Finally, we show that mating-type switching in C. glabrata can be triggered by CRISPR-Cas9 and without any high lethality.


Methods ◽  
2009 ◽  
Vol 48 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Toyoko Tsukuda ◽  
Kelly M. Trujillo ◽  
Emmanuelle Martini ◽  
Mary Ann Osley

1997 ◽  
Vol 17 (2) ◽  
pp. 770-777 ◽  
Author(s):  
R Wang ◽  
Y Jin ◽  
D Norris

Mating type switching in Saccharomyces cerevisiae initiates when Ho endonuclease makes a site-specific double-stranded break at MAT, the yeast mating type locus. To identify other proteins involved in this process, we examined whether extracts prepared from ho- mutants contain additional factors that bind near the recognition sequence for Ho. Using an electrophoretic mobility shift assay, we isolated a chromatographic fraction that contains an activity, named YZbp, which binds to two sequences flanking the recognition sequence at MATalpha and to one sequence overlapping it at MATa. MAT plasmids carrying mutations in the YZbp recognition sequence are cleaved by purified Ho at wild-type efficiencies in an in vitro assay. These same plasmids, however, are not cleaved by Ho inside cells, demonstrating that YZbp acts as a positive activator of in vivo cleavage. YZbp is present in all cell types, even those not undergoing mating type switching, suggesting that it has additional cellular functions.


1986 ◽  
Vol 6 (11) ◽  
pp. 3831-3837
Author(s):  
M Jayaram

Double-strand breaks in DNA are known to promote recombination in Saccharomyces cerevisiae. Yeast mating type switching, which is a highly efficient gene conversion event, is apparently initiated by a site-specific double-strand break. The 2 micrograms circle site-specific recombinase, FLP, has been shown to make double-strand breaks in its substrate DNA. By using a hybrid 2 micrograms circle::Tn5 plasmid, a portion of which resembles, in its DNA organization, the active (MAT) and the silent (HML) yeast mating type loci, it is shown that FLP mediates a conversion event analogous to mating type switching. Whereas the FLP site-specific recombination is not dependent on the RAD52 gene product, the FLP-induced conversion is abolished in a rad52 background. The FLP-promoted conversion in vivo can be faithfully reproduced by making a double-stranded gap in vitro in the vicinity of the FLP site and allowing the gap to be repaired in vivo.


1981 ◽  
Vol 1 (6) ◽  
pp. 522-534
Author(s):  
B Weiffenbach ◽  
J E Haber

In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4578-4587 ◽  
Author(s):  
Victoria J. Weston ◽  
Ceri E. Oldreive ◽  
Anna Skowronska ◽  
David G. Oscier ◽  
Guy Pratt ◽  
...  

Abstract The Ataxia Telangiectasia Mutated (ATM) gene is frequently inactivated in lymphoid malignancies such as chronic lymphocytic leukemia (CLL), T-prolymphocytic leukemia (T-PLL), and mantle cell lymphoma (MCL) and is associated with defective apoptosis in response to alkylating agents and purine analogues. ATM mutant cells exhibit impaired DNA double strand break repair. Poly (ADP-ribose) polymerase (PARP) inhibition that imposes the requirement for DNA double strand break repair should selectively sensitize ATM-deficient tumor cells to killing. We investigated in vitro sensitivity to the poly (ADP-ribose) polymerase inhibitor olaparib (AZD2281) of 5 ATM mutant lymphoblastoid cell lines (LCL), an ATM mutant MCL cell line, an ATM knockdown PGA CLL cell line, and 9 ATM-deficient primary CLLs induced to cycle and observed differential killing compared with ATM wildtype counterparts. Pharmacologic inhibition of ATM and ATM knockdown confirmed the effect was ATM-dependent and mediated through mitotic catastrophe independently of apoptosis. A nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft model of an ATM mutant MCL cell line demonstrated significantly reduced tumor load and an increased survival of animals after olaparib treatment in vivo. Addition of olaparib sensitized ATM null tumor cells to DNA-damaging agents. We suggest that olaparib would be an appropriate agent for treating refractory ATM mutant lymphoid tumors.


Sign in / Sign up

Export Citation Format

Share Document