scholarly journals Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor.

1994 ◽  
Vol 14 (8) ◽  
pp. 5192-5201 ◽  
Author(s):  
A G Batzer ◽  
D Rotin ◽  
J M Ureña ◽  
E Y Skolnik ◽  
J Schlessinger

We analyzed the binding site(s) for Grb2 on the epidermal growth factor (EGF) receptor (EGFR), using cell lines overexpressing EGFRs containing various point and deletion mutations in the carboxy-terminal tail. Results of co-immunoprecipitation experiments suggest that phosphotyrosines Y-1068 and Y-1173 mediate the binding of Grb2 to the EGFR. Competition experiments with synthetic phosphopeptides corresponding to known autophosphorylation sites on the EGFR demonstrated that phosphopeptides containing Y-1068, and to a lesser extent Y-1086, were able to inhibit the binding of Grb2 to the EGFR, while a Y-1173 peptide did not. These findings were confirmed by using a dephosphorylation protection assay and by measuring the dissociation constants of Grb2's SH2 domain to tyrosine-phosphorylated peptides, using real-time biospecific interaction analysis (BIAcore). From these studies, we concluded that Grb2 binds directly to the EGFR at Y-1068, to a lesser extent at Y-1086, and indirectly at Y-1173. Since Grb2 also binds Shc after EGF stimulation, we investigated whether Y-1173 is a binding site for the SH2 domain of Shc on the EGFR. Both competition experiments with synthetic phosphopeptides and dephosphorylation protection analysis demonstrated that Y-1173 and Y-992 are major and minor binding sites, respectively, for Shc on the EGFR. However, other phosphorylation sites in the carboxy-terminal tail of the EGFR are able to compensate for the loss of the main binding sites for Shc. These analyses reveal a hierarchy of interactions between Grb2 and Shc with the EGFR and indicate that Grb2 can bind the tyrosine-phosphorylated EGFR directly, as well as indirectly via Shc.

1994 ◽  
Vol 14 (8) ◽  
pp. 5192-5201
Author(s):  
A G Batzer ◽  
D Rotin ◽  
J M Ureña ◽  
E Y Skolnik ◽  
J Schlessinger

We analyzed the binding site(s) for Grb2 on the epidermal growth factor (EGF) receptor (EGFR), using cell lines overexpressing EGFRs containing various point and deletion mutations in the carboxy-terminal tail. Results of co-immunoprecipitation experiments suggest that phosphotyrosines Y-1068 and Y-1173 mediate the binding of Grb2 to the EGFR. Competition experiments with synthetic phosphopeptides corresponding to known autophosphorylation sites on the EGFR demonstrated that phosphopeptides containing Y-1068, and to a lesser extent Y-1086, were able to inhibit the binding of Grb2 to the EGFR, while a Y-1173 peptide did not. These findings were confirmed by using a dephosphorylation protection assay and by measuring the dissociation constants of Grb2's SH2 domain to tyrosine-phosphorylated peptides, using real-time biospecific interaction analysis (BIAcore). From these studies, we concluded that Grb2 binds directly to the EGFR at Y-1068, to a lesser extent at Y-1086, and indirectly at Y-1173. Since Grb2 also binds Shc after EGF stimulation, we investigated whether Y-1173 is a binding site for the SH2 domain of Shc on the EGFR. Both competition experiments with synthetic phosphopeptides and dephosphorylation protection analysis demonstrated that Y-1173 and Y-992 are major and minor binding sites, respectively, for Shc on the EGFR. However, other phosphorylation sites in the carboxy-terminal tail of the EGFR are able to compensate for the loss of the main binding sites for Shc. These analyses reveal a hierarchy of interactions between Grb2 and Shc with the EGFR and indicate that Grb2 can bind the tyrosine-phosphorylated EGFR directly, as well as indirectly via Shc.


1994 ◽  
Vol 14 (6) ◽  
pp. 3550-3558
Author(s):  
S P Soltoff ◽  
K L Carraway ◽  
S A Prigent ◽  
W G Gullick ◽  
L C Cantley

Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 257 ◽  
Author(s):  
Ping Wee ◽  
Zhixiang Wang

The overactivation of epidermal growth factor (EGF) receptor (EGFR) is implicated in various cancers. Endocytosis plays an important role in EGFR-mediated cell signaling. We previously found that EGFR endocytosis during mitosis is mediated differently from interphase. While the regulation of EGFR endocytosis in interphase is well understood, little is known regarding the regulation of EGFR endocytosis during mitosis. Here, we found that contrary to interphase cells, mitotic EGFR endocytosis is more reliant on the activation of the E3 ligase CBL. By transfecting HeLa, MCF-7, and 293T cells with CBL siRNA or dominant-negative 70z-CBL, we found that at high EGF doses, CBL is required for EGFR endocytosis in mitotic cells, but not in interphase cells. In addition, the endocytosis of mutant EGFR Y1045F-YFP (mutation at the direct CBL binding site) is strongly delayed. The endocytosis of truncated EGFR Δ1044-YFP that does not bind to CBL is completely inhibited in mitosis. Moreover, EGF induces stronger ubiquitination of mitotic EGFR than interphase EGFR, and mitotic EGFR is trafficked to lysosomes for degradation. Furthermore, we showed that, different from interphase, low doses of EGF still stimulate EGFR endocytosis by non-clathrin mediated endocytosis (NCE) in mitosis. Contrary to interphase, CBL and the CBL-binding regions of EGFR are required for mitotic EGFR endocytosis at low doses. This is due to the mitotic ubiquitination of the EGFR even at low EGF doses. We conclude that mitotic EGFR endocytosis exclusively proceeds through CBL-mediated NCE.


1989 ◽  
Vol 9 (2) ◽  
pp. 671-677 ◽  
Author(s):  
A Basu ◽  
M Raghunath ◽  
S Bishayee ◽  
M Das

The tyrosine kinase activity of the epidermal growth factor (EGF) receptor is regulated by a truncated receptor of 100 kilodaltons (kDa) that contains the EGF-binding site but not the kinase domain. The inhibition of kinase is not due to competition for available EGF or for the kinase substrate-binding site. Chemical cross-linking studies suggest that the 100-kDa receptor may form a heterodimer with the intact EGF receptor. Structurally related receptor kinases, such as the platelet-derived growth factor receptor, the insulin receptor, and the Neu receptor, were not inhibited by the 100-kDa receptor. The results indicate that (i) the inhibition was specific for the EGF receptor, (ii) the kinase domain had little or no role in determining target specificity, and (iii) the regulation of kinase may be due to a specific interaction of the 100-kDa receptor with the ligand-binding domain of the EGF receptor kinase.


1992 ◽  
Vol 12 (3) ◽  
pp. 981-990
Author(s):  
P Hu ◽  
B Margolis ◽  
E Y Skolnik ◽  
R Lammers ◽  
A Ullrich ◽  
...  

One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.


1987 ◽  
Vol 105 (1) ◽  
pp. 449-456 ◽  
Author(s):  
J V Garcia ◽  
M P Stoppelli ◽  
K L Thompson ◽  
S J Decker ◽  
M R Rosner

The identification of a novel protein from Drosophila melanogaster that binds both mammalian epidermal growth factor (EGF) and insulin has been reported (Thompson, K. L., S. J. Decker, and M. R. Rosner, 1985, Proc. Natl. Acad. Sci. USA., 82:8443-8447). This 100-kD protein (designated dp100) is also recognized by an antiserum against the human EGF receptor. To further characterize the properties of this protein, we have determined the binding spectrum, glycosylation state, and cellular distribution of dp100. Our results indicate that dp100 binds to other insulin-like and EGF-like growth factors with dissociation constants ranging from 10(-6) to 10(-9) M, and these ligands compete with each other for binding to dp100. All other ligands tested, including platelet-derived growth factor, transforming growth factor-beta, nerve growth factor, and glucagon, either did not bind or bound with a Kd greater than 10(-6) M. Unlike the Drosophila insulin receptor, dp100 does not bind to wheat germ agglutinin and is present in a cytoplasmic as well as a membrane-bound form that cannot be differentiated by two-dimensional PAGE. Further, dp100 is the sole transforming growth factor-alpha-binding protein detected by affinity labeling in Drosophila Kc cells. These results indicate that dp100 shares properties in common with, but distinct from, the Drosophila homologues of the insulin and EGF receptors.


1993 ◽  
Vol 136 (1) ◽  
pp. 43-50 ◽  
Author(s):  
M. C. Lacroix ◽  
G. Kann

ABSTRACT Studies of the binding of 125I-labelled epidermal growth factor (EGF) to the ovine placenta were carried out on days 50, 90–100 and 140 of pregnancy. Membrane fractions were purified from the fetal area of the cotyledon. Two classes of binding sites were found. Their dissociation constants (Kd) were not significantly different for the three stages of pregnancy considered (high-affinity Kd 54–70·2 pmol/l; low-affinity Kd 12·2 to 19 nmol/l). However, the number of high-affinity binding sites on days 90–100 was significantly (P < 0·01) greater (146 ± 19 fmol/mg protein) than on either day 50 or day 140 (respectively 74·2 ± 1·26 and 56·3 ± 5·6 fmol/mg protein). Affinity cross-linking studies followed by SDS-PAGE under reducing conditions demonstrated that the major part of the EGF was specifically cross-linked to a protein of molecular weight of 150 kDa and to lesser extent to 180 kDa and 130 kDa proteins. Membranes prepared from unfrozen tissues, in the presence of sodium iodoacetate to reduce endogenous enzymatic conversion of the 180 kDa form to the 150 and 130 kDa forms, still exhibited a major EGF-binding protein of 150 kDa. The occurrence of an increased number of EGF receptors at the period of rapid cotyledonary growth which coincides with the increase in placental hormonal secretions suggests that EGF has a role in the development of the ovine placenta. Journal of Endocrinology (1993) 136, 43–50


1993 ◽  
Vol 4 (7) ◽  
pp. 737-746 ◽  
Author(s):  
I Mothe ◽  
R Ballotti ◽  
S Tartare ◽  
A Kowalski-Chauvel ◽  
E Van Obberghen

We have studied the effects of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) on epidermal growth factor (EGF) binding to PC12 cells. We show that NGF and bFGF rapidly induce a reduction in 125I-EGF binding to PC12 cells in a dose-dependent manner. This decrease amounts to 50% for NGF and 35% for bFGF. Both factors appear to act through a protein kinase C(PKC)-independent pathway, because their effect persists in PKC-downregulated PC12 cells. Scatchard analysis indicates that NGF and bFGF decrease the number of high affinity EGF binding sites. In addition to their effect on EGF binding, NGF and bFGF activate in intact PC12 cells one or several serine/threonine kinases leading to EGF receptor threonine phosphorylation. Using an in vitro phosphorylation system, we show that NGF- or bFGF-activated extracellular regulated kinase 1 (ERK1) is able to phosphorylate a kinase-deficient EGF receptor. Phosphoamino acid analysis indicates that this phosphorylation occurs mainly on threonine residues. Furthermore, two comparable phosphopeptides are observed in the EGF receptor, phosphorylated either in vivo after NGF treatment or in a cell-free system by NGF-activated ERK1. Finally, a good correlation was found between the time courses of ERK1 activation and 125I-EGF binding inhibition after NGF or bFGF treatment. In conclusion, in PC12 cells the NGF- and bFGF-stimulated ERK1 appears to be involved in the induction of the threonine phosphorylation of the EGF receptor and the decrease in the number of high affinity EGF binding sites.


1992 ◽  
Vol 12 (3) ◽  
pp. 981-990 ◽  
Author(s):  
P Hu ◽  
B Margolis ◽  
E Y Skolnik ◽  
R Lammers ◽  
A Ullrich ◽  
...  

One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.


Sign in / Sign up

Export Citation Format

Share Document