scholarly journals Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter.

1995 ◽  
Vol 15 (5) ◽  
pp. 2782-2790 ◽  
Author(s):  
J P Cogswell ◽  
M M Godlevski ◽  
M Bonham ◽  
J Bisi ◽  
L Babiss

Progression through the somatic cell cycle requires the temporal regulation of cyclin gene expression and cyclin protein turnover. One of the best-characterized examples of this regulation is seen for the B-type cyclins. These cyclins and their catalytic component, cdc2, have been shown to mediate both the entry into and maintenance of mitosis. The cyclin B1 gene has been shown to be expressed between the late S and G2 phases of the cell cycle, while the protein is degraded specifically at interphase via ubiquitination. To understand the molecular basis for transcriptional regulation of the cyclin B1 gene, we cloned the human cyclin B1 gene promoter region. Using a chloramphenicol acetyltransferase reporter system and both stable and transient assays, we have shown that the cyclin B1 gene promoter (extending to -3800 bp relative to the cap site) can confer G2-enhanced promoter activity. Further analysis revealed that an upstream stimulatory factor (USF)-binding site and its cognate transcription factor(s) are critical for expression from the cyclin B1 promoter in cycling HeLa cells. Interestingly, USF DNA-binding activity appears to be regulated in a G2-specific fashion, supporting the idea that USF may play some role in cyclin B1 gene activation. These studies suggest an important link between USF and the cyclin B1 gene, which in part explains how maturation promoting factor complex formation is regulated.

1999 ◽  
Vol 344 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Edwin CHEUNG ◽  
Petra MAYR ◽  
Federico CODA-ZABETTA ◽  
Phillip G. WOODMAN ◽  
David S. W. BOAM

The ubiquitous transcription factor upstream stimulatory factor (USF) 1 is a member of the bzHLH (leucine zipper-basic-helix-loop-helix) family, which is structurally related to the Myc family of proteins. It plays a role in the regulation of many genes, including the cyclin B1 gene, which is active during the G2/M and M phases of the cell cycle and may also play a role in the regulation of cellular proliferation. We show that the affinity of recombinant USF-1 for DNA is greatly increased by treatment with active cyclin A2-p34cdc2 or cyclin B1-p34cdc2 complexes and that its interaction with DNA is dependent on p34cdc2-mediated phosphorylation. We have localized the phosphorylation site(s) to a region that lies outside the minimal DNA-binding domain but overlaps with the previously identified USF-specific region. Deletion studies of USF-1 suggest that amino acids 143-197 regulate DNA-binding activity in a phosphorylation-dependent manner.


Blood ◽  
2020 ◽  
Vol 136 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Wen-Chieh Pi ◽  
Jun Wang ◽  
Miho Shimada ◽  
Jia-Wei Lin ◽  
Huimin Geng ◽  
...  

Abstract E2A, a basic helix-loop-helix transcription factor, plays a crucial role in determining tissue-specific cell fate, including differentiation of B-cell lineages. In 5% of childhood acute lymphoblastic leukemia (ALL), the t(1,19) chromosomal translocation specifically targets the E2A gene and produces an oncogenic E2A-PBX1 fusion protein. Although previous studies have shown the oncogenic functions of E2A-PBX1 in cell and animal models, the E2A-PBX1–enforced cistrome, the E2A-PBX1 interactome, and related mechanisms underlying leukemogenesis remain unclear. Here, by unbiased genomic profiling approaches, we identify the direct target sites of E2A-PBX1 in t(1,19)–positive pre-B ALL cells and show that, compared with normal E2A, E2A-PBX1 preferentially binds to a subset of gene loci cobound by RUNX1 and gene-activating machineries (p300, MED1, and H3K27 acetylation). Using biochemical analyses, we further document a direct interaction of E2A-PBX1, through a region spanning the PBX1 homeodomain, with RUNX1. Our results also show that E2A-PBX1 binding to gene enhancers is dependent on the RUNX1 interaction but not the DNA-binding activity harbored within the PBX1 homeodomain of E2A-PBX1. Transcriptome analyses and cell transformation assays further establish a significant RUNX1 requirement for E2A-PBX1–mediated target gene activation and leukemogenesis. Notably, the RUNX1 locus itself is also directly activated by E2A-PBX1, indicating a multilayered interplay between E2A-PBX1 and RUNX1. Collectively, our study provides the first unbiased profiling of the E2A-PBX1 cistrome in pre-B ALL cells and reveals a previously unappreciated pathway in which E2A-PBX1 acts in concert with RUNX1 to enforce transcriptome alterations for the development of pre-B ALL.


Author(s):  
Takayuki Shimizu ◽  
Yuuki Hayashi ◽  
Munehito Arai ◽  
Shawn E McGlynn ◽  
Tatsuru Masuda ◽  
...  

Abstract Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.


2019 ◽  
Vol 77 (11) ◽  
pp. 2141-2156 ◽  
Author(s):  
Marcela Sabou ◽  
Cécile Doderer-Lang ◽  
Caroline Leyer ◽  
Ana Konjic ◽  
Sophie Kubina ◽  
...  

1992 ◽  
Vol 116 (1) ◽  
pp. 31-42 ◽  
Author(s):  
S J Busch ◽  
G A Martin ◽  
R L Barnhart ◽  
M Mano ◽  
A D Cardin ◽  
...  

Heparin blocks the phorbol ester-induced progression of nontransformed cells through the G0/G1 phase (Wright, T.C., L.A. Pukac, J.J. Castellot, M.J. Karnovsky, R.A. Levine, H.-Y. Kim-Park, and J. Campisi. 1989. Proc. Natl. Acad. Sci. USA. 86: 3199-3203) or G1 to S phase (Reilly, C. F., M. S. Kindy, K. E. Brown, R. D. Rosenberg, and G. E Sonenshein. 1989. J. Biol. Chem. 264:6990-6995) of the cell cycle. Cell cycle arrest was associated with decreased levels of stage-specific mRNAs suggesting transcriptional regulation of cell growth. In the present report, we show that heparin selectively repressed TPA-inducible AP-1-mediated gene expression. Heparin-induced trans-repression was observed in primary vascular smooth muscle cells, as well as in the transformed HeLa cell line and in nondifferentiated F9 teratocarcinoma cells. Inhibition of AP-1-mediated trans-activation occurred with heparin and pentosan polysulfate but not with chondroitin sulfate A or C. Heparin-binding peptides or heparitinase I addition to nuclear lysates of heparin-treated cells allowed enhanced recovery of endogenous AP-1-specific DNA binding activity. We propose a model in which nuclear glycosaminoglycans play a trans-regulatory role in altering the patterns of inducible gene expression.


1990 ◽  
Vol 188 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Michihiko SATO ◽  
Shinobu ISHIZAWA ◽  
Tadashi YOSHIDA ◽  
Shigeki SHIBAHARA

2012 ◽  
Vol 32 (3) ◽  
pp. 323-332 ◽  
Author(s):  
Kuiran Liu ◽  
Tianda Feng ◽  
Jie Liu ◽  
Ming Zhong ◽  
Shulan Zhang

The human DEK proto-oncogene has been found to play an important role in autoimmune disease, viral infection and human carcinogenesis. Although it is transcriptionally up-regulated in cervical cancer, its intracellular function and regulation is still unexplored. In the present study, DEK and IκBα [inhibitor of NF-κB (nuclear factor κB) α] shRNAs (short hairpin RNAs) were constructed and transfected into CaSki cells using Lipofectamine™. The stable cell line CaSki–DEK was obtained after G418 selection. CaSki–IκB cells were observed at 48 h after psiRNA-IκB transfection. The inhibitory efficiency of shRNAs were detected by RT (reverse transcription)–PCR and Western blot analysis. The proliferation activity of cells were measured using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay, cell apoptosis was measured using an Annexin V/PI (propidium iodide) kit, the cell cycle was analysed by flow cytometry and cell senescence was detected using senescence β-galactosidase staining. The intracellular expression of NF-κB p65 protein was studied by cytochemistry. The expression levels of NF-κB p65, p50, c-Rel, IκBα and phospho-IκBα protein were analysed by immunoblotting in whole-cell lysates, cytosolic fractions and nuclear extracts. The protein expression and activity of p38 and JNK (c-Jun N-terminal kinase) were also assayed. In addition, the NF-κB p65 DNA-binding activity was measured by ELISA. Following the silencing of DEK and IκBα, cell proliferation was inhibited, apoptosis was increased, the cell cycle was blocked in the G0/G1-phase with a corresponding decrease in the G2/M-phase, and cell senescence was induced. All of these effects may be related to the up-regulation of NF-κB p65 expression and its nuclear translocation.


Author(s):  
Nili Feuerstein ◽  
James J. Mond ◽  
Paul R. Kinchington ◽  
Robert Hickey ◽  
Marja-Liisa Karjalainen Lindsberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document