scholarly journals Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae.

1995 ◽  
Vol 15 (7) ◽  
pp. 3608-3617 ◽  
Author(s):  
H Laman ◽  
D Balderes ◽  
D Shore

Previous studies have indicated that mutation of RAP1 (rap1s) or of the HMR-E silencer ARS consensus element leads to metastable repression of HMR. A number of extragenic suppressor mutations (sds, suppressors of defective silencing) that increase the fraction of repressed cells in rap1s hmr delta A strains have been identified. Here we report the cloning of three SDS genes. SDS11 is identical to SWI6, a transcriptional regulator of genes required for DNA replication and of cyclin genes. SDS12 is identical to RNR1, which encodes a subunit of ribonucleotide reductase. SDS15 is identical to CIN8, whose product is required for spindle formation. We propose that mutations in these genes improve the establishment of silencing by interfering with normal cell cycle progression. In support of this idea, we show that exposure to hydroxyurea, which increases the length of S phase, also restores silencing in rap1s hmr delta A strains. Mutations in different cyclin genes (CLN3, CLB5, and CLB2) and two cell cycle transcriptional regulators (SWI4 and MBP1) also suppress the silencing defect at HMR. The effect of these cell cycle regulators is not specific to the rap1s or hmr delta A mutation, since swi6, swi4, and clb5 mutations also suppress mutations in SIR1, another gene implicated in the establishment of silencing. Several mutations also improve the efficiency of telomeric silencing in wild-type strains, further demonstrating that disturbance of the cell cycle has a general effect on position effect repression in Saccharomyces cerevisiae. We suggest several possible models to explain this phenomenon.

2019 ◽  
Vol 132 (2) ◽  
pp. jcs223123 ◽  
Author(s):  
Hidemasa Goto ◽  
Toyoaki Natsume ◽  
Masato T. Kanemaki ◽  
Aika Kaito ◽  
Shujie Wang ◽  
...  

2009 ◽  
Vol 185 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Arne Lindqvist ◽  
Verónica Rodríguez-Bravo ◽  
René H. Medema

The decision to enter mitosis is mediated by a network of proteins that regulate activation of the cyclin B–Cdk1 complex. Within this network, several positive feedback loops can amplify cyclin B–Cdk1 activation to ensure complete commitment to a mitotic state once the decision to enter mitosis has been made. However, evidence is accumulating that several components of the feedback loops are redundant for cyclin B–Cdk1 activation during normal cell division. Nonetheless, defined feedback loops become essential to promote mitotic entry when normal cell cycle progression is perturbed. Recent data has demonstrated that at least three Plk1-dependent feedback loops exist that enhance cyclin B–Cdk1 activation at different levels. In this review, we discuss the role of various feedback loops that regulate cyclin B–Cdk1 activation under different conditions, the timing of their activation, and the possible identity of the elusive trigger that controls mitotic entry in human cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leonardo Santos ◽  
Laura Colman ◽  
Paola Contreras ◽  
Claudia C. Chini ◽  
Adriana Carlomagno ◽  
...  

Abstract The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.


2010 ◽  
Vol 24 (22) ◽  
pp. 2531-2542 ◽  
Author(s):  
S. Wu ◽  
W. Wang ◽  
X. Kong ◽  
L. M. Congdon ◽  
K. Yokomori ◽  
...  

1992 ◽  
Vol 3 (12) ◽  
pp. 1443-1454 ◽  
Author(s):  
J T McGrew ◽  
L Goetsch ◽  
B Byers ◽  
P Baum

Mutations in the ESP1 gene of Saccharomyces cerevisiae disrupt normal cell-cycle control and cause many cells in a mutant population to accumulate extra spindle pole bodies. To determine the stage at which the esp1 gene product becomes essential for normal cell-cycle progression, synchronous cultures of ESP1 mutant cells were exposed to the nonpermissive temperature for various periods of time. The mutant cells retained viability until the onset of mitosis, when their viability dropped markedly. Examination of these cells by fluorescence and electron microscopy showed the first detectable defect to be a structural failure in the spindle. Additionally, flow cytometric analysis of DNA content demonstrated that massive chromosome missegregation accompanied this failure of spindle function. Cytokinesis occurred despite the aberrant nuclear division, which often resulted in segregation of both spindle poles to the same cell. At later times, the missegregated spindle pole bodies entered a new cycle of duplication, thereby leading to the accumulation of extra spindle pole bodies within a single nucleus. The DNA sequence predicts a protein product similar to those of two other genes that are also required for nuclear division: the cut1 gene of Schizosaccharomyces pombe and the bimB gene of Aspergillus nidulans.


2011 ◽  
Vol 286 (14) ◽  
pp. 12796-12802 ◽  
Author(s):  
Kyung-Jong Lee ◽  
Yu-Fen Lin ◽  
Han-Yi Chou ◽  
Hirohiko Yajima ◽  
Kazi R. Fattah ◽  
...  

1991 ◽  
Vol 11 (8) ◽  
pp. 4111-4120
Author(s):  
B A Morgan ◽  
B A Mittman ◽  
M M Smith

The N-terminal domains of the histones H3 and H4 are highly conserved throughout evolution. Mutant alleles deleted for these N-terminal domains were constructed in vitro and examined for function in vivo in Saccharomyces cerevisiae. Cells containing a single deletion allele of either histone H3 or histone H4 were viable. Deletion of the N-terminal domain of histone H4 caused cells to become sterile and temperature sensitive for growth. The normal cell cycle progression of these cells was also altered, as revealed by a major delay in progression through the G2 + M periods. Deletion of the N-terminal domain of histone H3 had only minor effects on mating and the temperature-sensitive growth of mutant cells. However, like the H4 mutant, the H3 mutants had a significant delay in completing the G2 + M periods of the division cycle. Double mutants containing N-terminal domain deletions of both histone H3 and histone H4 were inviable. The phenotypes of cells subject to this synthetic lethality suggest that the N-terminal domains are required for functions essential throughout the cell division cycle and provide genetic evidence that histones are randomly distributed during chromosome replication.


1994 ◽  
Vol 107 (1) ◽  
pp. 241-252 ◽  
Author(s):  
C. Burger ◽  
M. Wick ◽  
S. Brusselbach ◽  
R. Muller

Mitogenic stimulation of quiescent cells not only triggers the cell division cycle but also induces an increase in cell volume, associated with an activation of cellular metabolism. It is therefore likely that genes encoding enzymes and other proteins involved in energy metabolism and biosynthetic pathways represent a major class of mitogen-induced genes. In the present study, we investigated in the non-established human fibroblast line WI-38 the induction by mitogens of 17 genes whose products play a role in different metabolic processes. We show that these genes fall into 4 different categories, i.e. non-induced genes, immediate early (IE) primary genes, delayed early (DE) secondary genes and late genes reaching peak levels in S-phase. In addition, we have analysed the regulation of these genes during normal cell cycle progression, using HL-60 cells separated by counterflow elutriation. A clear cell cycle regulation was seen with those genes that are induced in S-phase, i.e. thymidine kinase, thymidylate synthase and dihydrofolate reductase. In addition, two DE genes showed a cell cycle dependent expression. Ornithine decarboxylase mRNA increased around mid-G1, reaching maximum levels in S/G2, while hexokinase mRNA expression was highest in early G1. In contrast, the expression of other DE and IE genes did not fluctuate during the cell cycle, a result that was confirmed with elutriated WI-38 and serum-stimulated HL-60 cells. These observations suggest that G0-->S and G1-->S transition are distinct processes, exhibiting characteristic programmes of gene regulation, and merging around S-phase entry.


Sign in / Sign up

Export Citation Format

Share Document