Differential induction of ‘metabolic genes’ after mitogen stimulation and during normal cell cycle progression

1994 ◽  
Vol 107 (1) ◽  
pp. 241-252 ◽  
Author(s):  
C. Burger ◽  
M. Wick ◽  
S. Brusselbach ◽  
R. Muller

Mitogenic stimulation of quiescent cells not only triggers the cell division cycle but also induces an increase in cell volume, associated with an activation of cellular metabolism. It is therefore likely that genes encoding enzymes and other proteins involved in energy metabolism and biosynthetic pathways represent a major class of mitogen-induced genes. In the present study, we investigated in the non-established human fibroblast line WI-38 the induction by mitogens of 17 genes whose products play a role in different metabolic processes. We show that these genes fall into 4 different categories, i.e. non-induced genes, immediate early (IE) primary genes, delayed early (DE) secondary genes and late genes reaching peak levels in S-phase. In addition, we have analysed the regulation of these genes during normal cell cycle progression, using HL-60 cells separated by counterflow elutriation. A clear cell cycle regulation was seen with those genes that are induced in S-phase, i.e. thymidine kinase, thymidylate synthase and dihydrofolate reductase. In addition, two DE genes showed a cell cycle dependent expression. Ornithine decarboxylase mRNA increased around mid-G1, reaching maximum levels in S/G2, while hexokinase mRNA expression was highest in early G1. In contrast, the expression of other DE and IE genes did not fluctuate during the cell cycle, a result that was confirmed with elutriated WI-38 and serum-stimulated HL-60 cells. These observations suggest that G0-->S and G1-->S transition are distinct processes, exhibiting characteristic programmes of gene regulation, and merging around S-phase entry.

2019 ◽  
Vol 132 (2) ◽  
pp. jcs223123 ◽  
Author(s):  
Hidemasa Goto ◽  
Toyoaki Natsume ◽  
Masato T. Kanemaki ◽  
Aika Kaito ◽  
Shujie Wang ◽  
...  

2009 ◽  
Vol 185 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Arne Lindqvist ◽  
Verónica Rodríguez-Bravo ◽  
René H. Medema

The decision to enter mitosis is mediated by a network of proteins that regulate activation of the cyclin B–Cdk1 complex. Within this network, several positive feedback loops can amplify cyclin B–Cdk1 activation to ensure complete commitment to a mitotic state once the decision to enter mitosis has been made. However, evidence is accumulating that several components of the feedback loops are redundant for cyclin B–Cdk1 activation during normal cell division. Nonetheless, defined feedback loops become essential to promote mitotic entry when normal cell cycle progression is perturbed. Recent data has demonstrated that at least three Plk1-dependent feedback loops exist that enhance cyclin B–Cdk1 activation at different levels. In this review, we discuss the role of various feedback loops that regulate cyclin B–Cdk1 activation under different conditions, the timing of their activation, and the possible identity of the elusive trigger that controls mitotic entry in human cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leonardo Santos ◽  
Laura Colman ◽  
Paola Contreras ◽  
Claudia C. Chini ◽  
Adriana Carlomagno ◽  
...  

Abstract The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.


2010 ◽  
Vol 24 (22) ◽  
pp. 2531-2542 ◽  
Author(s):  
S. Wu ◽  
W. Wang ◽  
X. Kong ◽  
L. M. Congdon ◽  
K. Yokomori ◽  
...  

2011 ◽  
Vol 286 (14) ◽  
pp. 12796-12802 ◽  
Author(s):  
Kyung-Jong Lee ◽  
Yu-Fen Lin ◽  
Han-Yi Chou ◽  
Hirohiko Yajima ◽  
Kazi R. Fattah ◽  
...  

1993 ◽  
Vol 13 (6) ◽  
pp. 3792-3801 ◽  
Author(s):  
R Foster ◽  
G E Mikesell ◽  
L Breeden

The Saccharomyces cerevisiae SWI4 gene encodes an essential transcription factor which controls gene expression at the G1/S transition of the cell cycle. SWI4 transcription itself is cell cycle regulated, and this periodicity is crucial for the normal cell cycle regulation of HO and at least two of the G1 cyclins. Since the regulation of SWI4 is required for normal cell cycle progression, we have characterized cis- and trans-acting regulators of SWI4 transcription. Deletion analysis of the SWI4 promoter has defined a 140-bp region which is absolutely required for transcription and can function as a cell cycle-regulated upstream activating sequence (UAS). The SWI4 UAS contains three potential MluI cell cycle boxes (MCBs), which are known cell cycle-regulated promoter elements. Deletion of all three MCBs in the SWI4 UAS decreases the level of SWI4 mRNA 10-fold in asynchronous cultures but does not abolish periodicity. These data suggest that MCBs are involved in SWI4 UAS activity, but at least one other periodically regulated element must be present. Since SWI6 is known to bind to MCBs and regulate their activity, the role of SWI6 in SWI4 expression was analyzed. Although the MCBs cannot account for the full cell cycle regulation of SWI4, mutations in SWI6 eliminate the normal periodicity of SWI4 transcription. This suggests that the novel cell cycle-regulated element within the SWI4 promoter is also SWI6 dependent. The constitutive transcription of SWI4 in SWI6 mutant cells occurs at an intermediate level, which indicates that SWI6 is required for the full activation and repression of SWI4 transcription through the cell cycle. It also suggests that there is another pathway which can activate SWI4 transcription in the absence of SWI6. The second activator may also target MCB elements, since SWI4 transcription drops dramatically when they are deleted.


1993 ◽  
Vol 13 (6) ◽  
pp. 3792-3801
Author(s):  
R Foster ◽  
G E Mikesell ◽  
L Breeden

The Saccharomyces cerevisiae SWI4 gene encodes an essential transcription factor which controls gene expression at the G1/S transition of the cell cycle. SWI4 transcription itself is cell cycle regulated, and this periodicity is crucial for the normal cell cycle regulation of HO and at least two of the G1 cyclins. Since the regulation of SWI4 is required for normal cell cycle progression, we have characterized cis- and trans-acting regulators of SWI4 transcription. Deletion analysis of the SWI4 promoter has defined a 140-bp region which is absolutely required for transcription and can function as a cell cycle-regulated upstream activating sequence (UAS). The SWI4 UAS contains three potential MluI cell cycle boxes (MCBs), which are known cell cycle-regulated promoter elements. Deletion of all three MCBs in the SWI4 UAS decreases the level of SWI4 mRNA 10-fold in asynchronous cultures but does not abolish periodicity. These data suggest that MCBs are involved in SWI4 UAS activity, but at least one other periodically regulated element must be present. Since SWI6 is known to bind to MCBs and regulate their activity, the role of SWI6 in SWI4 expression was analyzed. Although the MCBs cannot account for the full cell cycle regulation of SWI4, mutations in SWI6 eliminate the normal periodicity of SWI4 transcription. This suggests that the novel cell cycle-regulated element within the SWI4 promoter is also SWI6 dependent. The constitutive transcription of SWI4 in SWI6 mutant cells occurs at an intermediate level, which indicates that SWI6 is required for the full activation and repression of SWI4 transcription through the cell cycle. It also suggests that there is another pathway which can activate SWI4 transcription in the absence of SWI6. The second activator may also target MCB elements, since SWI4 transcription drops dramatically when they are deleted.


2021 ◽  
Author(s):  
Nadine Pollak ◽  
Aline Lindner ◽  
Dirke Imig ◽  
Karsten Kuritz ◽  
Jacques S. Fritze ◽  
...  

Extrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating biologics. Here, we monitored cell cycle progression at minutes resolution to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour for mitosis, thereby passing on an apoptosis-primed state to their offspring. This translates into two distinct fates, apoptosis execution post mitosis or cell survival from inefficient apoptosis. Transmitotic resistance is linked to Mcl-1 upregulation and increased accumulation at mitochondria from mid S phase onwards, which allows cells to pass through mitosis with activated caspase-8, and with cells escaping apoptosis after mitosis sustaining sublethal DNA damage. Antagonizing Mcl-1 suppresses cell cycle-dependent delays in apoptosis, prevents apoptosis-resistant progression through mitosis and averts unwanted survival from apoptosis induction. Cell cycle progression therefore modulates signal transduction during extrinsic apoptosis, with Mcl-1 governing decision making between death, proliferation and survival. Cell cycle progression thus is a crucial process from which cell-to-cell heterogeneities in fates and treatment outcomes emerge in isogenic cell populations during extrinsic apoptosis.


1991 ◽  
Vol 11 (8) ◽  
pp. 4111-4120
Author(s):  
B A Morgan ◽  
B A Mittman ◽  
M M Smith

The N-terminal domains of the histones H3 and H4 are highly conserved throughout evolution. Mutant alleles deleted for these N-terminal domains were constructed in vitro and examined for function in vivo in Saccharomyces cerevisiae. Cells containing a single deletion allele of either histone H3 or histone H4 were viable. Deletion of the N-terminal domain of histone H4 caused cells to become sterile and temperature sensitive for growth. The normal cell cycle progression of these cells was also altered, as revealed by a major delay in progression through the G2 + M periods. Deletion of the N-terminal domain of histone H3 had only minor effects on mating and the temperature-sensitive growth of mutant cells. However, like the H4 mutant, the H3 mutants had a significant delay in completing the G2 + M periods of the division cycle. Double mutants containing N-terminal domain deletions of both histone H3 and histone H4 were inviable. The phenotypes of cells subject to this synthetic lethality suggest that the N-terminal domains are required for functions essential throughout the cell division cycle and provide genetic evidence that histones are randomly distributed during chromosome replication.


Sign in / Sign up

Export Citation Format

Share Document