scholarly journals Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

1996 ◽  
Vol 16 (11) ◽  
pp. 5955-5963 ◽  
Author(s):  
S Krautwald ◽  
D Büscher ◽  
V Kummer ◽  
S Buder ◽  
M Baccarini

Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways.

1997 ◽  
Vol 17 (3) ◽  
pp. 1170-1179 ◽  
Author(s):  
O Rausch ◽  
C J Marshall

The receptor for granulocyte colony-stimulating factor (G-CSF) can mediate differentiation and proliferation of hemopoietic cells. A proliferative signal is associated with activation of the ERK mitogen-activated protein kinase (MAPK) pathway. To determine whether other MAPK pathways are activated by G-CSF signalling, we have investigated activation of JNK/SAPK in cells proliferating in response to G-CSF. Here we show that G-CSF and interleukin-3 activate JNK/SAPK in two hemopoietic cell lines. The region of the G-CSF receptor required for G-CSF-induced JNK/SAPK activation is located within the C-terminal 68 amino acids of the cytoplasmic domain, which contains Tyr 763. Mutation of Tyr 763 to Phe completely blocks JNK/SAPK activation. However, the C-terminal 68 amino acids are not required for ERK2 activation. We show that activation of JNK/SAPK, like that of ERK2, is dependent on Ras but that higher levels of Ras-GTP are associated with activation of JNK/SAPK than with activation of ERK2. Two separate functional regions of the G-CSF receptor contribute to activation of Ras. The Y763F mutation reduces G-CSF-induced Ras activation from 30 to 35% Ras-GTP to 10 to 13% Ras-GTP. Low levels of Ras activation (10 to 13% Ras-GTP), which are sufficient for ERK2 activation, require only the 100 membrane-proximal amino acids. High levels of Ras-GTP provided by expression of oncogenic Ras are not sufficient to activate JNK/SAPK. An additional signal, also mediated by Tyr 763, is required for activation of JNK/SAPK.


2004 ◽  
Vol 381 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Anderson A. ANDRADE ◽  
Patrícia N. G. SILVA ◽  
Anna C. T. C. PEREIRA ◽  
Lirlândia P. de SOUSA ◽  
Paulo C. P. FERREIRA ◽  
...  

Early events play a decisive role in virus multiplication. We have shown previously that activation of MAPK/ERK1/2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase 1/2) and protein kinase A are pivotal for vaccinia virus (VV) multiplication [de Magalhães, Andrade, Silva, Sousa, Ropert, Ferreira, Kroon, Gazzinelli and Bonjardim (2001) J. Biol. Chem. 276, 38353–38360]. In the present study, we show that VV infection provoked a sustained activation of both ERK1/2 and RSK2 (ribosomal S6 kinase 2). Our results also provide evidence that this pattern of kinase activation depends on virus multiplication and ongoing protein synthesis and is maintained independently of virus DNA synthesis. It is noteworthy that the VGF (VV growth factor), although involved, is not essential for prolonged ERK1/2 activation. Furthermore, our findings suggest that the VV-stimulated ERK1/2 activation also seems to require actin dynamics, microtubule polymerization and tyrosine kinase phosphorylation. The VV-stimulated pathway MEK/ERK1/2/RSK2 (where MEK stands for MAPK/ERK kinase) leads to phosphorylation of the ternary complex factor Elk-1 and expression of the early growth response (egr-1) gene, which kinetically paralleled the kinase activation. The recruitment of this pathway is biologically relevant, since its disruption caused a profound effect on viral thymidine kinase gene expression, viral DNA replication and VV multiplication. This pattern of sustained kinase activation after VV infection is unique. In addition, by connecting upstream signals generated at the cytoskeleton and by tyrosine kinase, the MEK/ERK1/2/RSK2 cascade seems to play a decisive role not only at early stages of the infection, i.e. post-penetration, but is also crucial to define the fate of virus progeny.


1996 ◽  
Vol 16 (12) ◽  
pp. 6698-6706 ◽  
Author(s):  
B H Spain ◽  
K S Bowdish ◽  
A R Pacal ◽  
S F Staub ◽  
D Koo ◽  
...  

We have isolated two novel human cDNAs, gps1-1 and gps2, that suppress lethal G-protein subunit-activating mutations in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Suppression of other pathway-activating events was examined. In wild-type cells, expression of either gps1-1 or gps2 led to enhanced recovery from cell cycle arrest induced by pheromone. Sequence analysis indicated that gps1-1 contains only the carboxy-terminal half of the gps1 coding sequence. The predicted gene product of gps1 has striking similarity to the protein encoded by the Arabidopsis FUS6 (COP11) gene, a negative regulator of light-mediated signal transduction that is known to be essential for normal development. A chimeric construct containing gps1 and FUS6 sequences also suppressed the yeast pheromone pathway, indicating functional conservation between these human and plant genes. In addition, when overexpressed in mammalian cells, gps1 or gps2 potently suppressed a RAS- and mitogen-activated protein kinase-mediated signal and interfered with JNK activity, suggesting that signal repression is part of their normal function. For gps1, these results are consistent with the proposed function of FUS6 (COP11) as a signal transduction repressor in plants.


2000 ◽  
Vol 20 (17) ◽  
pp. 6426-6434 ◽  
Author(s):  
Lori A. Neely ◽  
Charles S. Hoffman

ABSTRACT A significant challenge to our understanding of eukaryotic transcriptional regulation is to determine how multiple signal transduction pathways converge on a single promoter to regulate transcription in divergent fashions. To study this, we have investigated the transcriptional regulation of theSchizosaccharomyces pombe fbp1 gene that is repressed by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway and is activated by a stress-activated mitogen-activated protein kinase (MAPK) pathway. In this study, we identified and characterized twocis-acting elements in the fbp1 promoter required for activation of fbp1 transcription. Upstream activation site 1 (UAS1), located approximately 900 bp from the transcriptional start site, resembles a cAMP response element (CRE) that is the binding site for the atf1-pcr1 heterodimeric transcriptional activator. Binding of this activator to UAS1 is positively regulated by the MAPK pathway and negatively regulated by PKA. UAS2, located approximately 250 bp from the transcriptional start site, resembles a Saccharomyces cerevisiae stress response element. UAS2 is bound by transcriptional activators and repressors regulated by both the PKA and MAPK pathways, although atf1 itself is not present in these complexes. Transcriptional regulation offbp1 promoter constructs containing only UAS1 or UAS2 confirms that the PKA and MAPK regulation is targeted to both sites. We conclude that the PKA and MAPK signal transduction pathways regulatefbp1 transcription at UAS1 and UAS2, but that the antagonistic interactions between these pathways involve different mechanisms at each site.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 132-140 ◽  
Author(s):  
JP de Koning ◽  
AM Schelen ◽  
F Dong ◽  
C van Buitenen ◽  
BM Burgering ◽  
...  

Abstract Signal transduction from the granulocyte colony-stimulating factor receptor (G-CSF-R) occurs via multiple pathways, one of which involves activation of p21Ras and mitogen-activated protein kinase. The SH2 domain-containing proteins Shc and GRB2 have been implicated in this latter signaling route. We studied the role of these proteins in signal transduction from wild type (WT) G-CSF-R, C-terminal deletion mutants, and tyrosine-to-phenylalanine substitution mutants in transfectants of the mouse pro-B cell line, BAF3. G-CSF stimulation of BAF3 cells expressing WT G-CSF-R induced tyrosine phosphorylation of Shc. Anti-Shc antibodies co-immunoprecipitated tyrosine-phosphorylated 145-kD proteins (p145), whereas GRB2 immunoprecipitates contained phosphorylated Shc, Syp, and proteins of 145 and 90 kD (p90). Neither of these complexes were detected after activation of a C-terminal deletion mutant of G-CSF-R that lacked all four conserved cytoplasmic tyrosine residues. G-CSF induced formation of Syp/GRB2 complexes in all the tyrosine-substitution mutants, suggesting that this association did not depend on the presence of single specific tyrosine residues in G-CSF-R. In contrast, tyrosine 764 of G-CSF-R appeared to be exclusively required for tyrosine phosphorylation of Shc and its association with p145 and GRB2. In addition, tyrosine 764 also specifically mediated binding of GRB2 to p90 without the involvement of Shc. These findings indicate that tyrosine 764 of G-CSF-R has a prominent role in G-CSF signal transduction.


Sign in / Sign up

Export Citation Format

Share Document