scholarly journals Specific involvement of tyrosine 764 of human granulocyte colony- stimulating factor receptor in signal transduction mediated by p145/Shc/GRB2 or p90/GRB2 complexes

Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 132-140 ◽  
Author(s):  
JP de Koning ◽  
AM Schelen ◽  
F Dong ◽  
C van Buitenen ◽  
BM Burgering ◽  
...  

Abstract Signal transduction from the granulocyte colony-stimulating factor receptor (G-CSF-R) occurs via multiple pathways, one of which involves activation of p21Ras and mitogen-activated protein kinase. The SH2 domain-containing proteins Shc and GRB2 have been implicated in this latter signaling route. We studied the role of these proteins in signal transduction from wild type (WT) G-CSF-R, C-terminal deletion mutants, and tyrosine-to-phenylalanine substitution mutants in transfectants of the mouse pro-B cell line, BAF3. G-CSF stimulation of BAF3 cells expressing WT G-CSF-R induced tyrosine phosphorylation of Shc. Anti-Shc antibodies co-immunoprecipitated tyrosine-phosphorylated 145-kD proteins (p145), whereas GRB2 immunoprecipitates contained phosphorylated Shc, Syp, and proteins of 145 and 90 kD (p90). Neither of these complexes were detected after activation of a C-terminal deletion mutant of G-CSF-R that lacked all four conserved cytoplasmic tyrosine residues. G-CSF induced formation of Syp/GRB2 complexes in all the tyrosine-substitution mutants, suggesting that this association did not depend on the presence of single specific tyrosine residues in G-CSF-R. In contrast, tyrosine 764 of G-CSF-R appeared to be exclusively required for tyrosine phosphorylation of Shc and its association with p145 and GRB2. In addition, tyrosine 764 also specifically mediated binding of GRB2 to p90 without the involvement of Shc. These findings indicate that tyrosine 764 of G-CSF-R has a prominent role in G-CSF signal transduction.

Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 132-140 ◽  
Author(s):  
JP de Koning ◽  
AM Schelen ◽  
F Dong ◽  
C van Buitenen ◽  
BM Burgering ◽  
...  

Signal transduction from the granulocyte colony-stimulating factor receptor (G-CSF-R) occurs via multiple pathways, one of which involves activation of p21Ras and mitogen-activated protein kinase. The SH2 domain-containing proteins Shc and GRB2 have been implicated in this latter signaling route. We studied the role of these proteins in signal transduction from wild type (WT) G-CSF-R, C-terminal deletion mutants, and tyrosine-to-phenylalanine substitution mutants in transfectants of the mouse pro-B cell line, BAF3. G-CSF stimulation of BAF3 cells expressing WT G-CSF-R induced tyrosine phosphorylation of Shc. Anti-Shc antibodies co-immunoprecipitated tyrosine-phosphorylated 145-kD proteins (p145), whereas GRB2 immunoprecipitates contained phosphorylated Shc, Syp, and proteins of 145 and 90 kD (p90). Neither of these complexes were detected after activation of a C-terminal deletion mutant of G-CSF-R that lacked all four conserved cytoplasmic tyrosine residues. G-CSF induced formation of Syp/GRB2 complexes in all the tyrosine-substitution mutants, suggesting that this association did not depend on the presence of single specific tyrosine residues in G-CSF-R. In contrast, tyrosine 764 of G-CSF-R appeared to be exclusively required for tyrosine phosphorylation of Shc and its association with p145 and GRB2. In addition, tyrosine 764 also specifically mediated binding of GRB2 to p90 without the involvement of Shc. These findings indicate that tyrosine 764 of G-CSF-R has a prominent role in G-CSF signal transduction.


2000 ◽  
Vol 192 (5) ◽  
pp. 647-658 ◽  
Author(s):  
Andreas Villunger ◽  
Lorraine A. O'Reilly ◽  
Nils Holler ◽  
Jerry Adams ◽  
Andreas Strasser

The short life span of granulocytes, which limits many inflammatory responses, is thought to be influenced by the Bcl-2 protein family, death receptors such as CD95 (Fas/APO-1), stress-activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), and proinflammatory cytokines like granulocyte colony-stimulating factor (G-CSF). To clarify the roles of these various regulators in granulocyte survival, we have investigated the spontaneous apoptosis of granulocytes in culture and that induced by Fas ligand or chemotherapeutic drugs, using cells from normal, CD95-deficient lpr, or vav-bcl-2 transgenic mice. CD95-induced apoptosis, which required receptor aggregation by recombinant Fas ligand or the membrane-bound ligand, was unaffected by G-CSF treatment or Bcl-2 overexpression. Conversely, spontaneous and drug-induced apoptosis occurred normally in lpr granulocytes but were suppressed by G-CSF treatment or Bcl-2 overexpression. Although activation of p38 MAPK has been implicated in granulocyte death, their apoptosis actually was markedly accelerated by specific inhibitors of this kinase. These results suggest that G-CSF promotes granulocyte survival largely through the Bcl-2–controlled pathway, whereas CD95 regulates a distinct pathway to apoptosis that is not required for either their spontaneous or drug-induced death. Moreover, p38 MAPK signaling contributes to granulocyte survival rather than their apoptosis.


Blood ◽  
1995 ◽  
Vol 85 (11) ◽  
pp. 3117-3126 ◽  
Author(s):  
BR Avalos ◽  
MG Hunter ◽  
JM Parker ◽  
SK Ceselski ◽  
BJ Druker ◽  
...  

The human granulocyte colony-stimulating factor receptor (hG-CSFR) belongs to the cytokine receptor superfamily. As with other members of this family, the cytoplasmic domain of hG-CSFR lacks intrinsic tyrosine kinase activity. To identify critical regions mediating growth signal transduction by hG-CSFR, deletions or site-directed amino acid substitutions were introduced into the cytoplasmic domain of hG-CSFR, and the mutant cDNAs were transfected into the murine interleukin-3 (IL-3)-dependent Ba/F3 and FDCP cell lines. Truncation of the carboxy-terminal end of the receptor to the membrane-proximal 53 amino acids of the cytoplasmic domain, which retained the conserved Box 1 and Box 2 sequence motifs, decreased the ability of hG-CSFR to transduce G-CSF-mediated growth signals without an associated loss in receptor binding affinity. Substitution of proline by alanine at amino acid positions 639 and 641 within Box 1 completely abolished the G-CSF-mediated growth signal. Rapid induction of tyrosine phosphorylation of several cellular proteins, including a 75-kD protein (p75) identified as c-rel, was an early event associated with transduction of proliferative signals by hG-CSFR in Ba/F3 transfectants. Mutant receptors containing Pro-to-Ala substitutions that inactivated the receptor for mitogenic activity also inactivated the receptor for tyrosine-specific phosphorylation of p75. These results show that the conserved Box 1 sequence motif (amino acids 634 to 641) is critical for mitogenesis and activation of cellular tyrosine kinases by hG-CSFR.


1996 ◽  
Vol 16 (11) ◽  
pp. 5955-5963 ◽  
Author(s):  
S Krautwald ◽  
D Büscher ◽  
V Kummer ◽  
S Buder ◽  
M Baccarini

Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways.


1997 ◽  
Vol 17 (3) ◽  
pp. 1170-1179 ◽  
Author(s):  
O Rausch ◽  
C J Marshall

The receptor for granulocyte colony-stimulating factor (G-CSF) can mediate differentiation and proliferation of hemopoietic cells. A proliferative signal is associated with activation of the ERK mitogen-activated protein kinase (MAPK) pathway. To determine whether other MAPK pathways are activated by G-CSF signalling, we have investigated activation of JNK/SAPK in cells proliferating in response to G-CSF. Here we show that G-CSF and interleukin-3 activate JNK/SAPK in two hemopoietic cell lines. The region of the G-CSF receptor required for G-CSF-induced JNK/SAPK activation is located within the C-terminal 68 amino acids of the cytoplasmic domain, which contains Tyr 763. Mutation of Tyr 763 to Phe completely blocks JNK/SAPK activation. However, the C-terminal 68 amino acids are not required for ERK2 activation. We show that activation of JNK/SAPK, like that of ERK2, is dependent on Ras but that higher levels of Ras-GTP are associated with activation of JNK/SAPK than with activation of ERK2. Two separate functional regions of the G-CSF receptor contribute to activation of Ras. The Y763F mutation reduces G-CSF-induced Ras activation from 30 to 35% Ras-GTP to 10 to 13% Ras-GTP. Low levels of Ras activation (10 to 13% Ras-GTP), which are sufficient for ERK2 activation, require only the 100 membrane-proximal amino acids. High levels of Ras-GTP provided by expression of oncogenic Ras are not sufficient to activate JNK/SAPK. An additional signal, also mediated by Tyr 763, is required for activation of JNK/SAPK.


Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4435-4444 ◽  
Author(s):  
SS Tian ◽  
P Tapley ◽  
C Sincich ◽  
RB Stein ◽  
J Rosen ◽  
...  

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of proliferation and differentiation of neutrophilic granulocyte precursor cells. G-CSF activates multiple signaling molecules, including the JAK1 and JAK2 kinases and the STAT transcription factors. To investigate G-CSF signaling events regulated by the JAK-STAT pathway, we have generated UT7-epo cells stably expressing either wild-type (wt) G-CSF receptor or a series of C-terminal deletion mutants. Gel mobility shift and immunoprecipitation/Western analysis showed that STAT5 is rapidly activated by G-CSF in cells expressing the wt G-CSF receptor, in addition to the previously reported STAT3 and STAT1. Mutants lacking any tyrosine residues in the cytoplasmic domain maintain their ability to activate STAT5 and STAT1 but cannot activate STAT3, implying that STAT5 and STAT1 activation does not require receptor tyrosine phosphorylation. We also observed significant changes in the ratio of STAT1:STAT3:STAT5 activated by various G-CSF receptor C-terminal deletion mutants. These mutant receptors were further used to investigate the role of JAKs and STATs in G-CSF-mediated responses in these cells. We found that JAK activation correlates with G-CSF-induced cell proliferation, whereas STAT activation is not required. We have also identified three classes of G-CSF immediate early genes, whose activation correlates with the activation of distinct JAK-STAT pathways. Our data show that, whereas c-fos is regulated through a pathway independent of STAT activation, oncostatin M, IRF-1, and egr-1 are regulated by an STAT5-dependent pathway and fibrinogen is regulated by an STAT3-dependent pathway. In conclusion, our results suggest that G-CSF regulates its complex biologic activities by selectively activating distinct early response genes through different JAK-STAT signaling molecules.


Sign in / Sign up

Export Citation Format

Share Document