scholarly journals Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2.

1996 ◽  
Vol 16 (3) ◽  
pp. 952-959 ◽  
Author(s):  
J J Hsieh ◽  
T Henkel ◽  
P Salmon ◽  
E Robey ◽  
M G Peterson ◽  
...  

The Notch/Lin-12/Glp-1 receptor family participates in cell-cell signaling events that influence cell fate decisions. Although several Notch homologs and receptor ligands have been identified, the nuclear events involved in this pathway remain incompletely understood. A truncated form of Notch, consisting only of the intracellular domain (NotchIC), localizes to the nucleus and functions as an activated receptor. Using both an in vitro binding assay and a cotransfection assay based on the two-hybrid principle, we show that mammalian NotchIC interacts with the transcriptional repressor CBF1, which is the human homolog of Drosophila Suppressor of Hairless. Cotransfection assays using segments of mouse NotchIC and CBF1 demonstrated that the N-terminal 114-amino-acid region of mouse NotchIC contains the CBF1 interactive domain and that the cdc10/ankyrin repeats are not essential for this interaction. This result was confirmed in immunoprecipation assays in which the N-terminal 114-amino-acid segment of NotchIC, but not the ankyrin repeat region, coprecipitated with CBF1. Mouse NotchIC itself is targeted to the transcriptional repression domain (aa179 to 361) of CBF1. Furthermore, transfection assays in which mouse NotchIC was targeted through Gal4-CBF1 or through endogenous cellular CBF1 indicated that NotchIC transactivates gene expression via CBF1 tethering to DNA. Transactivation by NotchIC occurs partially through abolition of CBF1-mediated repession. This same mechanism is used by Epstein-Barr virus EBNA2. Thus, mimicry of Notch signal transduction is involved in Epstein-Barr virus-driven immortalization.

2018 ◽  
Author(s):  
Lorraine Z Mutsvunguma ◽  
Anne Barasa ◽  
Charles Warden ◽  
Joslyn Foley ◽  
Murali Muniraju ◽  
...  

AbstractPrevention of Epstein-Barr virus (EBV) primary infection has focused on generating neutralizing antibodies (nAbs) targeting the major envelope glycoprotein gp350/220 (gp350). To date, eight gp350 epitopes have been identified, but only one has elicited nAbs. In this study, we generated 23 hybridomas that produced anti-gp350 antibodies. We compared the candidate anti-gp350 antibodies to nAb-72A1 by: (1) testing their ability to detect gp350 using ELISA, flow cytometry, and immunoblot; (2) sequencing their heavy and light chain complementarity-determining regions (CDRs); (3) measuring the ability of each monoclonal antibody (mAb) to neutralize EBV infectionin vitro; and (4) mapping the gp350 amino acids bound by the mAbs using RepliTope peptide microarrays. Eight antibodies recognized both denatured and non-denatured gp350, whereas five failed to react with denatured gp350 but recognized native gp350, suggesting they recognized conformational epitope(s). Sequence analysis of the heavy and light chain variable regions of the hybridomas identified 15 as mAbs with novel CDR regions unique from those of nAb-72A1. Seven of the new mAbs neutralized EBVin vitro, with HB20 and HB17 reducing EBV infection by 40% and >60%, and >30% and 80%, at 10 μg/ml and 50 μg/ml, respectively. Epitope mapping identified nine epitopes and defined their core residues, including two unique immunodominant epitopes,253TPIPGTGYAYSLRLTPRPVSRFL253and875LLLLVMADCAFRRNLSTSHTYTTPPY899, and a novel nAb epitope381GAFASNRTFDIT392. This study provides comprehensivein vitromapping of the exact residues defining nine epitopes of EBV gp350. Our findings will inform novel strategies to design optimal EBV vaccines capable of conferring broader protection against the virus.ImportanceNeutralizing antibodies (nAbs) directed against Epstein-Barr virus envelope glycoprotein gp350/220 (gp350) are generated in humans upon infection or immunization, and are thought to prevent neonatal infection. However, clinical use of exogenous nAbs (passive immunization) is limited to a single study using the only well-characterized nAb, 72A1. The gp350 ectodomain contains at least eight unique B-cell binding epitopes; two of these epitopes are recognized by nAb-72A1. The exact amino acid residues of the other six epitopes and their role in generating nAbs has not been elucidated. We used our 15 newly generated and fully characterized monoclonal antibodies and a peptide-overlapping RepliTope array to provide a comprehensive map of the core amino acid residues that define epitopes of gp350 and to understand their role in generating nAbs. These results will inform design of better-targeted gp350 peptide vaccines that contain only protective epitopes, which will focus the B-cell response to produce predominantly nAbs.


1982 ◽  
Vol 156 (6) ◽  
pp. 1854-1859 ◽  
Author(s):  
S L Wee ◽  
L K Chen ◽  
G Strassmann ◽  
F H Bach

We report here a class of helper cell-independent cytotoxic T cell (HITc) clones in man that can proliferate in response to antigenic stimulation as well as mediate cytotoxicity. HITc appear to be rare among clones derived from primary in vitro allosensitized culture, but constitute the majority of clones derived from cells sensitized to autologous Epstein-Barr virus-transformed lymphoblastoid cell lines. The implications of the derivation and function of HITc clones are discussed.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


2000 ◽  
Vol 204 (2) ◽  
pp. 114-127 ◽  
Author(s):  
Roberto P. Revoltella ◽  
Leopoldo Laricchia Robbio ◽  
Anna Marina Liberati ◽  
Gigliola Reato ◽  
Robin Foa ◽  
...  

Virology ◽  
1979 ◽  
Vol 95 (1) ◽  
pp. 222-226 ◽  
Author(s):  
Tohru Kamata ◽  
Shigeaki Tanaka ◽  
Shogo Aikawa ◽  
Yorio Hinuma ◽  
Yasushi Watanabe

Sign in / Sign up

Export Citation Format

Share Document