scholarly journals cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt).

1996 ◽  
Vol 16 (4) ◽  
pp. 1706-1713 ◽  
Author(s):  
K Hirose ◽  
M Morita ◽  
M Ema ◽  
J Mimura ◽  
H Hamada ◽  
...  

We isolated mouse cDNA clones (Arnt2) that are highly similar to but distinct from the aryl hydrocarbon receptor (AhR) nuclear translocator (Arnt). The composite cDNA covered a 2,443-bp sequence consisting of a putative 2,136-bp open reading frame encoding a polypeptide of 712 amino acids. The predicted Arnt2 polypeptide carries a characteristic basic helix-loop-helix (bHLH)/PAS motif in its N-terminal region with close similarity (81% identity) to that of mouse Arnt and has an overall sequence identity of 57% with Arnt. Biochemical properties and interaction of Arnt2 with other bHLH/PAS proteins were investigated by coimmunoprecipitation assays, gel mobility shift assays, and the yeast two-hybrid system. Arnt2 interacted with AhR and mouse Sim as efficiently as Arnt, and the Arnt2-AhR complex recognized and bound specifically the xenobiotic responsive element (XRE) sequence. Expression of Arnt2 successfully rescued XRE-driven reporter gene activity in the Arnt-defective c4 mutant of Hepa-1 cells. RNA blot analysis revealed that expression of Arnt2 mRNA was restricted to the brains and kidneys of adult mice, while Arnt mRNA was expressed ubiquitously. In addition, whole-mount in situ hybridization of 9.5-day mouse embryos showed that Arnt2 mRNA was expressed in the dorsal neural tube and branchial arch 1, while Arnt transcripts were detected broadly in various tissues of mesodermal and endodermal origins. These results suggest that Arnt2 may play different roles from Arnt both in adult mice and in developing embryos. Finally, sequence comparison of the currently known bHLH/PAS proteins indicates a division into two phylogenetic groups: the Arnt group, containing Arnt, Arnt2, and Per, and the AhR group, consisting of AhR, Sim, and Hif-1alpha.

Endocrinology ◽  
2000 ◽  
Vol 141 (1) ◽  
pp. 450-453 ◽  
Author(s):  
Rodolfo Robles ◽  
Yutaka Morita ◽  
Koren K. Mann ◽  
Gloria I. Perez ◽  
Shi Yang ◽  
...  

Abstract The aryl hydrocarbon receptor (AhR), so-designated based on the ability of the protein to bind with and be activated by polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons, is part of an emerging family of ligand-activated transcriptional regulators that are distinct from the steroid-thyroid hormone receptor superfamily. Once bound by ligand, the AhR interacts with the AhR nuclear translocator (ARNT) protein to form the aryl hydrocarbon receptor complex (AHRC). Both subunits of the AHRC contain sequences corresponding to basic helix-loop-helix domains, a motif that is shared by a number of other dimeric transcription factors. Although the natural ligand(s) for the AhR remains to be elucidated, to date over fifteen genes, including enzymes, growth factors and other transcription factors, have been identified as potential targets for transcriptional regulation by the chemically-activated AHRC. In the ovary, PAH exposure is known to cause destruction of oocytes within immature follicles, implying that one function of the AhR is to mediate cell death signaling in the female germ line. To assess this possibility, we explored AhR expression patterns in the murine ovary, and then determined the impact of AhR-deficiency (gene knockout) on female germ cell dynamics. Immunohistochemical analysis of ovaries of wild-type female mice indicated that AhR protein was abundantly and exclusively expressed in oocytes and granulosa cells of follicles at all stages of development. Histomorphometric analysis of serial ovarian sections revealed a two-fold higher number of primordial follicles in Ahr-null versus wild-type females at day 4 postpartum. This phenotype likely results from a cell-intrinsic death defect in the developing germ line since AhR-deficiency attenuated the magnitude of oocyte apoptosis in fetal ovaries cultured without hormonal support for 72 h. We propose that the AhR, activated by an as yet unknown endogenous ligand(s), serves to regulate the size of the oocyte reserve endowed at birth by affecting germ cell death during female gametogenesis.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 914
Author(s):  
Shan ◽  
Zhang ◽  
Yu ◽  
Wang ◽  
Li ◽  
...  

Basic helix–loop–helix (bHLH) transcription factor (TF) family is commonly found in eukaryotes, which is one of the largest families of regulator proteins. It plays an important role in plant growth and development, as well as various biotic and abiotic stresses. However, a comprehensive analysis of the bHLH family has not been reported in Brassica oleracea. In this study, we systematically describe the BobHLHs in the phylogenetic relationships, expression patterns in different organs/tissues, and in response to chilling stress, and gene and protein characteristics. A total of 234 BobHLH genes were identified in the B. oleracea genome and were further clustered into twenty-three subfamilies based on the phylogenetic analyses. A large number of BobHLH genes were unevenly located on nine chromosomes of B. oleracea. Analysis of RNA-Seq expression profiles revealed that 21 BobHLH genes exhibited organ/tissue-specific expression. Additionally, the expression of six BobHLHs (BobHLH003, -048, -059, -093, -109, and -148) were significantly down-regulated in chilling-sensitive cabbage (CS-D9) and chilling-tolerant cabbage (CT-923). At 24h chilling stress, BobHLH054 was significantly down-regulated and up-regulated in chilling-treated CS-D9 and CT-923. Conserved motif characterization and exon/intron structural patterns showed that BobHLH genes had similar structures in the same subfamily. This study provides a comprehensive analysis of BobHLH genes and reveals several candidate genes involved in chilling tolerance of B. oleracea, which may be helpful to clarify the roles of bHLH family members and understand the regulatory mechanisms of BobHLH genes in response to the chilling stress of cabbage.


1994 ◽  
Vol 14 (2) ◽  
pp. 1383-1394 ◽  
Author(s):  
Y H Lee ◽  
M Yano ◽  
S Y Liu ◽  
E Matsunaga ◽  
P F Johnson ◽  
...  

The rat CYP2D5 gene encodes a cytochrome P450 and is expressed in liver cells. Its expression commences a few days after birth, and maximal mRNA levels are achieved when animals reach puberty. Transfection and DNA binding studies were performed to investigate the mechanism controlling developmentally programmed, liver-specific expression of CYP2D5. Transfection studies using a series of CYP2D5 upstream DNA chloramphenicol acetyltransferase gene fusion constructs identified a segment of DNA between nucleotides -55 and -156 that conferred transcriptional activity in HepG2 cells. Activity was markedly increased by cotransfection with a vector expressing C/EBP beta but was unaffected by vectors producing other liver-enriched transcription factors (C/EBP alpha, HNF-1 alpha, and DBP). DNase I footprinting revealed a region protected by both HepG2 and liver cell nuclear extracts between nucleotides -83 and -112. This region displayed some sequence similarity to the Sp1 consensus sequence and was able to bind the Sp1 protein, as assessed by a gel mobility shift assay. The role of Sp1 in CYP2D5 transcription was confirmed by trans activation of the 2D5-CAT construct in Drosophila melanogaster cells by using an Sp1 expression vector. C/EBP beta alone was unable to directly bind the -83 to -112 region of the promoter but was able to produce a ternary complex when combined with HepG2 nuclear extracts or recombinant human Sp1. C/EBP alpha was unable to substitute for C/EBP beta in forming this ternary complex. A poor C/EBP binding site is present adjacent to the Sp1 site, and mutagenesis of this site abolished formation of the ternary complex with the CYP2D5 regulatory region. These result establish that two transcription factors can work in conjunction, possibly by protein-protein interaction, to activate the CYP2D5 gene.


2008 ◽  
Vol 22 (7) ◽  
pp. 1647-1657 ◽  
Author(s):  
Pierre-Luc Lavoie ◽  
Lionel Budry ◽  
Aurélio Balsalobre ◽  
Jacques Drouin

Abstract Cell-specific expression of the pituitary proopiomelanocortin (POMC) gene depends on the combinatorial action of a large number of DNA-binding transcription factors (TFs). These include general and cell-restricted factors, as well as factors that act as effectors of signaling pathways. We have previously defined in the distal POMC promoter a composite regulatory element that contains targets for basic helix-loop-helix TFs conferring cell specificity and for NGFI-B orphan nuclear receptors that are responsive to CRH signaling and to glucocorticoid negative feedback. These factors act on neighboring regulatory elements, the EboxNeuro and NurRE, respectively. Currently, the EboxNeuro is thought to be the target of NeuroD1 during fetal development, but this factor may not account for activity in the adult pituitary; it is also unknown whether the NurRE and NGFI-B-related factors are active before establishment of the hypothalamic-pituitary portal system. In order to assess the importance of these regulatory elements and their cognate TFs throughout pituitary organogenesis and in the adult, we have assessed the activity of mutant POMC promoters in transgenic mice throughout development. These experiments indicate that the EboxNeuro and cognate basic helix-loop-helix factors are required throughout development and in the adult gland, beyond expression of NeuroD1. Similarly, the data reveal sustained importance of the NurRE and its cognate factors throughout pituitary development. These data contrast the sustained dependence throughout development on the same regulatory elements with the highly dynamic patterns of TF expression and the modulation of their activity in response to signaling pathways.


2003 ◽  
Vol 370 (3) ◽  
pp. 771-784 ◽  
Author(s):  
Cristina PÉREZ-GÓMEZ ◽  
José M. MATÉS ◽  
Pedro M. GÓMEZ-FABRE ◽  
Antonio del CASTILLO-OLIVARES ◽  
Francisco J. ALONSO ◽  
...  

In mammals, glutaminase (GA) is expressed in most tissues, but the regulation of organ-specific expression is largely unknown. Therefore, as an essential step towards studying the regulation of GA expression, the human liver-type GA (hLGA) gene has been characterized. LGA genomic sequences were isolated using the genome walking technique. Analysis and comparison of these sequences with two LGA cDNA clones and the Human Genome Project database, allowed the determination of the genomic organization of the LGA gene. The gene has 18 exons and is approx. 18kb long. All exon/intron junction sequences conform to the GT/AG rule. Progressive deletion analysis of LGA promoter—luciferase constructs indicated that the core promoter is located between nt −141 and +410, with several potential regulatory elements: CAAT, GC, TATA-like, Ras-responsive element binding protein and specificity protein 1 (Sp1) sites. The minimal promoter was mapped within +107 and +410, where only an Sp1 binding site is present. Mutation experiments suggested that two CAAT recognition elements near the transcription-initiation site (-138 and −87), play a crucial role for optimal promoter activity. Electrophoretic mobility-shift assays confirmed the importance of CAAT- and TATA-like boxes to enhance basal transcription, and demonstrated that HNF-1 motif is a significant distal element for transcriptional regulation of the hLGA gene.


Sign in / Sign up

Export Citation Format

Share Document