scholarly journals Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase.

1996 ◽  
Vol 16 (9) ◽  
pp. 4824-4831 ◽  
Author(s):  
M J Moser ◽  
J R Geiser ◽  
T N Davis

The cmd1-6 allele contains three mutations that block Ca2+ binding to calmodulin from Saccharomyces cerevisiae. We find that strains containing cmd1-6 lose viability during cell cycle arrest induced by the mating pheromone alpha-factor. The 50% lethal dose (LD50) of alpha-factor for the calmodulin mutant is almost fivefold below the LD50 for a wild-type strain. The calmodulin mutants are not more sensitive to alpha-factor, as measured by activation of a pheromone-responsive reporter gene. Two observations indicate that activation of the Ca2+-calmodulin-dependent protein phosphatase calcineurin contributes to survival of pheromone-induced arrest. First, deletion of the gene encoding the calcineurin regulatory B subunit, CNB1, from a wild-type strain decreases the LD50 of alpha-factor but has no further effect on a cmd1-6 strain. Second, a dominant constitutive calcineurin mutant partially restores the ability of the cmd1-6 strain to survive exposure to alpha-factor. Activation of the Ca2+-calmodulin-dependent protein kinase (CaMK) also contributes to survival, thus revealing a new function for this enzyme. Deletion of the CMK1 and CMK2 genes, which encode CaMK, decreases the LD50 of pheromone compared with that for a wild-type strain but again has no effect in a cmd1-6 strain. Furthermore, the LD50 of alpha-factor for a mutant in which the calcineurin and CaMK genes have been deleted is the same as that for the calmodulin mutant. Finally, the CaMK and calcineurin pathways appear to be independent since the ability of constitutive calcineurin to rescue a cmd1-6 strain is not blocked by deletion of the CaMK genes.

1999 ◽  
Vol 181 (22) ◽  
pp. 6914-6921 ◽  
Author(s):  
Pascale Plamondon ◽  
Denis Brochu ◽  
Suzanne Thomas ◽  
Julie Fradette ◽  
Lucie Gauthier ◽  
...  

ABSTRACT In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His15) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser46) by an ATP-dependent protein kinase (His∼P and Ser-P, respectively). We have isolated fromStreptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His15 by EI nor the phosphorylation at Ser46 by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His∼P) than the wild-type strain, while the levels of free HPr and HPr(His∼P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of α-galactosidase, β-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


2008 ◽  
Vol 294 (5) ◽  
pp. H2352-H2362 ◽  
Author(s):  
Andreas A. Werdich ◽  
Eduardo A. Lima ◽  
Igor Dzhura ◽  
Madhu V. Singh ◽  
Jingdong Li ◽  
...  

In cardiac myocytes, the activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is hypothesized to regulate Ca2+ release from and Ca2+ uptake into the sarcoplasmic reticulum via the phosphorylation of the ryanodine receptor 2 and phospholamban (PLN), respectively. We tested the role of CaMKII and PLN on the frequency adaptation of cytosolic Ca2+ concentration ([Ca2+]i) transients in nearly 500 isolated cardiac myocytes from transgenic mice chronically expressing a specific CaMKII inhibitor, interbred into wild-type or PLN null backgrounds under physiologically relevant pacing conditions (frequencies from 0.2 to 10 Hz and at 37°C). When compared with that of mice lacking PLN only, the combined chronic CaMKII inhibition and PLN ablation decreased the maximum Ca2+ release rate by more than 50% at 10 Hz. Although PLN ablation increased the rate of Ca2+ uptake at all frequencies, its combination with CaMKII inhibition did not prevent a frequency-dependent reduction of the amplitude and the duration of the [Ca2+]i transient. High stimulation frequencies in the physiological range diminished the effects of PLN ablation on the decay time constant and on the maximum decay rate of the [Ca2+]i transient, indicating that the PLN-mediated feedback on [Ca2+]i removal is limited by high stimulation frequencies. Taken together, our results suggest that in isolated mouse ventricular cardiac myocytes, the combined chronic CaMKII inhibition and PLN ablation slowed Ca2+ release at physiological frequencies: the frequency-dependent decay of the amplitude and shortening of the [Ca2+]i transient occurs independent of chronic CaMKII inhibition and PLN ablation, and the PLN-mediated regulation of Ca2+ uptake is diminished at higher stimulation frequencies within the physiological range.


1990 ◽  
Vol 10 (6) ◽  
pp. 2931-2940
Author(s):  
S Osawa ◽  
L E Heasley ◽  
N Dhanasekaran ◽  
S K Gupta ◽  
C W Woon ◽  
...  

G-proteins couple hormonal activation of receptors to the regulation of specific enzymes and ion channels. Gs and Gi are G-proteins which regulate the stimulation and inhibition, respectively, of adenylyl cyclase. We have constructed two chimeric cDNAs in which different lengths of the alpha subunit of Gs (alpha s) have been replaced with the corresponding sequence of the Gi alpha subunit (alpha i2). One chimera, referred to as alpha i(54)/s' replaces the NH2-terminal 61 amino acids of alpha s with the first 54 residues of alpha i. Within this sequence there are 7 residues unique to alpha s, and 16 of the remaining 54 amino acids are nonhomologous between alpha i and alpha s. The second chimera, referred to as alpha i/s(Bam), replaces the first 234 amino acids of alpha s with the corresponding 212 residues of alpha i. Transient expression of alpha i(54)/s in COS-1 cells resulted in an 18- to 20-fold increase in cyclic AMP (cAMP) levels, whereas expression of either alpha i/s(Bam) or the wild-type alpha s polypeptide resulted in only a 5- to 6-fold increase in cellular cAMP levels. COS-1 cells transfected with alpha i showed a small decrease in cAMP levels. Stable expression of the chimeric alpha i(54)/s polypeptide in Chinese hamster ovary (CHO) cells constitutively increased both cAMP synthesis and cAMP-dependent protein kinase activity. CHO clones expressing transfected alpha i/s(Bam) or the wild-type alpha s and alpha i cDNAs exhibited cAMP levels and cAMP-dependent protein kinase activities similar to those in control CHO cells. Therefore, the alpha i(54)/s chimera behaves as a constitutively active alpha s polypeptide, whereas the alpha i/s(Bam) polypeptide is regulated similarly to wild-type alpha s. Expression in cyc-S49 cells, which lack expression of wild-type alpha s, confirmed that the alpha i(54)/s polypeptide is a highly active alpha s molecule whose robust activity is independent of any change in intrinsic GTPase activity. The difference in phenotypes observed upon expression of alpha i(54)/s or alpha i/s(Bam) indicates that the NH2-terminal moieties of alpha s and alpha i function as attenuators of the effector enzyme activator domain which is within the COOH-terminal half of the alpha subunit. Mutation at the NH2 terminus of alpha s relieves the attenuator control of the Gs protein and results in a dominant active G-protein mutant.


1982 ◽  
Vol 2 (10) ◽  
pp. 1229-1237
Author(s):  
T van Daalen Wetters ◽  
P Coffino

Dibutyryl adenosine 3',5'-phosphate (Bt2cAMP)-sensitive (Bt2cAMPS) revertants were isolated from a resistant S49 cell mutant carrying a structural gene lesion in the regulatory subunit of cAMP-dependent protein kinase (cA-PK). This was accomplished with a counter-selection in which, first, Bt2cAMP was used to reversibly arrest revertants, and then a sequence of treatments with bromodeoxyuridine, 33258 Hoechst dye, and white light was used to kill cycling mutant cells. Reversion rates in nonmutagenized cultures could not be accurately measured, but spontaneous revertants do occur and with frequencies of less than 10(-7) to 10(-5). The mutagens ethyl methane sulfonate (EMS), N-methyl-N'-nitro-N-nitro-soguanidine (MNNG), and ICR191 increased the reversion frequency. In all cases, reversion to Bt2cAMP sensitivity was associated with restoration of wild-type levels and apparent activation constant for cAMP of cA-PK. MNNG induced revertants whose cell extracts contained cA-PK activity distinguishable from that of wild type by thermal liability. EMS did not. The counter-selection effectively isolates rare phenotypes and is therefore a useful tool in further somatic genetic experiments. The association of reversion with alterations in cA-PK function supports all previous data from this and other laboratories implicating cA-PK as the intracellular mediator of cAMP effects. Reversion is probably the result of a mutational event. Induction of reversion by ICR191 suggests the existence of a novel mechanism for generating revertants in somatic cells.


2005 ◽  
Vol 73 (9) ◽  
pp. 5754-5761 ◽  
Author(s):  
Kwon-Sam Park ◽  
Michiko Arita ◽  
Tetsuya Iida ◽  
Takeshi Honda

ABSTRACT A histone-like nucleoid structure (H-NS) is a major component of the bacterial nucleoid and plays a crucial role in the global gene regulation of enteric bacteria. Here, we cloned and characterized the gene for the H-NS-like protein VpaH in Vibrio parahaemolyticus. vpaH encodes a protein of 134 amino acids that shows approximately 55%, 54%, and 41% identities with VicH in Vibrio cholerae, H-NS in V. parahaemolyticus, and H-NS in Escherichia coli, respectively. The vpaH gene was found in only trh-positive V. parahaemolyticus strains and not in Kanagawa-positive or in trh-negative environmental strains. Moreover, the G+C content of the vpaH gene was 38.6%, which is lower than the average G+C content of the whole genome of this bacterium (45.4%). These data suggest that vpaH was transmitted to trh-possessing V. parahaemolyticus strains by lateral transfer. The vpaH gene was located about 2.6 kb downstream of the trh gene, in the convergent direction of the trh transcription. An in-frame deletion mutant of vpaH lacked motility on semisolid motility assay plates. Western blot analysis and electron microscopy observations revealed that the mutant was deficient in lateral flagella biogenesis, whereas there was no defect in the expression of polar flagella. Additionally, the vpaH mutant showed a decreased adherence to HeLa cells and a decrease in biofilm formation compared with the wild-type strain. Introduction of the vpaH gene in the vpaH-negative strain increased the expression of lateral flagella compared with the wild-type strain. In conclusion, our findings suggest that VpaH affects lateral flagellum biogenesis in trh-positive V. parahaemolyticus strain TH3996.


1988 ◽  
Vol 53 (0) ◽  
pp. 111-119 ◽  
Author(s):  
G.S. McKnight ◽  
G.G. Cadd ◽  
C.H. Clegg ◽  
A.D. Otten ◽  
L.A. Correll

Sign in / Sign up

Export Citation Format

Share Document