scholarly journals Saccharomyces cerevisiae BUR6 encodes a DRAP1/NC2alpha homolog that has both positive and negative roles in transcription in vivo.

1997 ◽  
Vol 17 (4) ◽  
pp. 2057-2065 ◽  
Author(s):  
G Prelich

BUR3 and BUR6 were identified previously by selecting for mutations that increase transcription from an upstream activating sequence (UAS)-less promoter in Saccharomyces cerevisiae. The bur3-1 and bur6-1 mutations are recessive, increase transcription from a suc2 delta uas allele, and cause other mutant phenotypes, suggesting that Bur3p and Bur6p function as general repressors of the basal transcriptional machinery. The molecular cloning and characterization of BUR3 and BUR6 are presented here. BUR3 is identical to MOT1, a previously characterized essential gene that encodes an ATP-dependent inhibitor of the TATA box-binding protein. Cloning and nucleotide sequence analysis reveals that BUR6 encodes a homolog of DRAP1 (also called NC2alpha), a mammalian repressor of basal transcription. Strains that contain a bur6 null allele are viable but grow extremely poorly, demonstrating that BUR6 is critical for normal cell growth in yeast. The Bur6p histone fold domain is required for function; an extensive nonoverlapping set of deletion alleles throughout the histone fold domain impairs BUR6 function in vivo, whereas mutations in the amino- and carboxy-terminal tails have no detectable effect. BUR6 and BUR3/MOT1 have different functions depending on promoter context: although the bur3-1 and bur6-1 mutations increase transcription from delta uas promoters, they result in reduced transcription from the wild-type GAL1 and GAL10 promoters. This transcriptional defect is due to the inability of the GAL10 UAS to function in bur6-1 strains. The similar phenotypes of bur6 and bur3 (mot1) mutations suggest that Bur6p and Mot1p have related, but not identical, functions in modulating the activity of the general transcription machinery in vivo.

1999 ◽  
Vol 19 (9) ◽  
pp. 5847-5860 ◽  
Author(s):  
Danielle Vermaak ◽  
Paul A. Wade ◽  
Peter L. Jones ◽  
Yun-Bo Shi ◽  
Alan P. Wolffe

ABSTRACT We investigated the protein associations and enzymatic requirements for the Xenopus histone deacetylase catalytic subunit RPD3 to direct transcriptional repression in Xenopus oocytes. Endogenous Xenopus RPD3 is present in nuclear and cytoplasmic pools, whereas RbAp48 and SIN3 are predominantly nuclear. We cloned Xenopus RbAp48 and SIN3 and show that expression of RPD3, but not RbAp48 or SIN3, leads to an increase in nuclear and cytoplasmic histone deacetylase activity and transcriptional repression of the TRβA promoter. This repression requires deacetylase activity and nuclear import of RPD3 mediated by a carboxy-terminal nuclear localization signal. Exogenous RPD3 is not incorporated into previously described oocyte deacetylase and ATPase complexes but cofractionates with a component of the endogenous RbAp48 in the oocyte nucleus. We show that RPD3 associates with RbAp48 through N- and C-terminal contacts and that RbAp48 also interacts with SIN3. XenopusRbAp48 selectively binds to the segment of the N-terminal tail immediately proximal to the histone fold domain of histone H4 in vivo. Exogenous RPD3 may be targeted to histones through interaction with endogenous RbAp48 to direct transcriptional repression of theXenopus TRβA promoter in the oocyte nucleus. However, the exogenous RPD3 deacetylase functions to repress transcription in the absence of a requirement for association with SIN3 or other targeted corepressors.


2005 ◽  
Vol 25 (3) ◽  
pp. 945-957 ◽  
Author(s):  
M. M. Robinson ◽  
G. Yatherajam ◽  
R. T. Ranallo ◽  
A. Bric ◽  
M. R. Paule ◽  
...  

ABSTRACT TFIIA interacts with TFIID via association with TATA binding protein (TBP) and TBP-associated factor 11 (TAF11). We previously identified a mutation in the small subunit of TFIIA (toa2-I27K) that is defective for interaction with TAF11. To further explore the functional link between TFIIA and TAF11, the toa2-I27K allele was utilized in a genetic screen to isolate compensatory mutants in TAF11. Analysis of these compensatory mutants revealed that the interaction between TAF11 and TFIIA involves two distinct regions of TAF11: the highly conserved histone fold domain and the N-terminal region. Cells expressing a TAF11 allele defective for interaction with TFIIA exhibit conditional growth phenotypes and defects in transcription. Moreover, TAF11 imparts changes to both TFIIA-DNA and TBP-DNA contacts in the context of promoter DNA. These alterations appear to enhance the formation and stabilization of the TFIIA-TBP-DNA complex. Taken together, these studies provide essential information regarding the molecular organization of the TAF11-TFIIA interaction and define a mechanistic role for this association in the regulation of gene expression in vivo.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 973-981
Author(s):  
Kevin C Keith ◽  
Molly Fitzgerald-Hayes

Abstract Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chromosome loss rates exhibited by cse4 cen3 double-mutant cells that express mutant Cse4 proteins and carry chromosomes containing mutant centromere DNA (cen3). When compared to loss rates for cells carrying the same cen3 DNA mutants but expressing wild-type Cse4p, we found that mutations throughout the Cse4p histone-fold domain caused surprisingly large increases in the loss of chromosomes carrying CDE I or CDE II mutant centromeres, but had no effect on chromosomes with CDE III mutant centromeres. Our genetic evidence is consistent with direct interactions between Cse4p and the CDE I-CDE II region of the centromere DNA. On the basis of these and other results from genetic, biochemical, and structural studies, we propose a model that best describes the path of the centromere DNA around a specialized Cse4p-nucleosome.


1994 ◽  
Vol 14 (9) ◽  
pp. 6350-6360
Author(s):  
F Houman ◽  
C Holm

To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.


2001 ◽  
Vol 21 (15) ◽  
pp. 5109-5121 ◽  
Author(s):  
Yann-Gaël Gangloff ◽  
Jean-Christophe Pointud ◽  
Sylvie Thuault ◽  
Lucie Carré ◽  
Christophe Romier ◽  
...  

ABSTRACT The RNA polymerase II transcription factor TFIID comprises the TATA binding protein (TBP) and a set of TBP-associated factors (TAFIIs). TFIID has been extensively characterized for yeast, Drosophila, and humans, demonstrating a high degree of conservation of both the amino acid sequences of the constituent TAFIIs and overall molecular organization. In recent years, it has been assumed that all the metazoan TAFIIs have been identified, yet no metazoan homologues of yeast TAFII47 (yTAFII47) and yTAFII65 are known. Both of these yTAFIIs contain a histone fold domain (HFD) which selectively heterodimerizes with that of yTAFII25. We have cloned a novel mouse protein, TAFII140, containing an HFD and a plant homeodomain (PHD) finger, which we demonstrated by immunoprecipitation to be a mammalian TFIID component. TAFII140 shows extensive sequence similarity toDrosophila BIP2 (dBIP2) (dTAFII155), which we also show to be a component of DrosophilaTFIID. These proteins are metazoan homologues of yTAFII47 as their HFDs selectively heterodimerize with dTAFII24 and human TAFII30, metazoan homologues of yTAFII25. We further show that yTAFII65 shares two domains with theDrosophila Prodos protein, a recently described potential dTAFII. These conserved domains are critical for yTAFII65 function in vivo. Our results therefore identify metazoan homologues of yTAFII47 and yTAFII65.


2001 ◽  
Vol 21 (5) ◽  
pp. 1841-1853 ◽  
Author(s):  
Yann-Gaël Gangloff ◽  
Steven L. Sanders ◽  
Christophe Romier ◽  
Doris Kirschner ◽  
P. Anthony Weil ◽  
...  

ABSTRACT We show that the yeast TFIID (yTFIID) component yTAFII47 contains a histone fold domain (HFD) with homology to that previously described for hTAFII135. Complementation in vivo indicates that the yTAFII47 HFD is necessary and sufficient for vegetative growth. Mutation of highly conserved residues in the α1 helix of the yTAFII47 HFD results in a temperature-sensitive phenotype which can be suppressed by overexpression of yTAFII25, as well as by yTAFII40, yTAFII19, and yTAFII60. In yeast two-hybrid and bacterial coexpression assays, the yTAFII47 HFD selectively heterodimerizes with yTAFII25, which we show contains an HFD with homology to the hTAFII28 family We additionally demonstrate that yTAFII65 contains a functional HFD which also selectively heterodimerizes with yTAFII25. These results reveal the existence of two novel histone-like pairs in yTFIID. The physical and genetic interactions described here show that the histone-like yTAFIIs are organized in at least two substructures within TFIID rather than in a single octamer-like structure as previously suggested. Furthermore, our results indicate that ySPT7 has an HFD homologous to that of yTAFII47 which selectively heterodimerizes with yTAFII25, defining a novel histone-like pair in the SAGA complex.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 406 ◽  
Author(s):  
Nerina Gnesutta ◽  
Matteo Chiara ◽  
Andrea Bernardini ◽  
Matteo Balestra ◽  
David S. Horner ◽  
...  

Nuclear Factor Y (NF-Y) is an evolutionarily conserved trimer formed by a Histone-Fold Domain (HFD) heterodimeric module shared by core histones, and the sequence-specific NF-YA subunit. In plants, the genes encoding each of the three subunits have expanded in number, giving rise to hundreds of potential trimers. While in mammals NF-Y binds a well-characterized motif, with a defined matrix centered on the CCAAT box, the specificity of the plant trimers has yet to be determined. Here we report that Arabidopsis thaliana NF-Y trimeric complexes, containing two different NF-YA subunits, bind DNA in vitro with similar affinities. We assayed precisely sequence-specificity by saturation mutagenesis, and analyzed genomic DNA sites bound in vivo by selected HFDs. The plant NF-Y CCAAT matrix is different in nucleotides flanking CCAAT with respect to the mammalian matrix, in vitro and in vivo. Our data point to flexible DNA-binding rules by plant NF-Ys, serving the scope of adapting to a diverse audience of genomic motifs.


1995 ◽  
Vol 15 (11) ◽  
pp. 6283-6290 ◽  
Author(s):  
J V Geisberg ◽  
J L Chen ◽  
R P Ricciardi

Transcriptional activation by the adenovirus E1A 289R protein requires direct contacts with the TATA box-binding protein (TBP) and also displays a critical requirement for TBP-associated factors (TAFs) (T.G. Boyer and A. J. Berk, Genes Dev. 7:1810-1823, 1993; J. V. Geisberg, W. S. Lee, A. J. Berk, and R. P. Ricciardi, Proc. Natl. Acad. Sci. USA 91:2488-2492, 1994; W. S. Lee, C. C. Kao, G. O. Bryant, X. Liu, and A. J. Berk, Cell 67:365-376, 1991; and Q. Zhou, P. M. Lieberman, T. G. Boyer, and A. J. Berk, Genes Dev. 6:1964-1974, 1992). In this report, we demonstrate that the activation domain of E1A (CR3) specifically binds to two TAFs, human TAFII250 (hTAFII250) and Drosophila TAFII110 (dTAFII110). These interactions can take place both in vivo and in vitro and require the carboxy-terminal region of CR3; the zinc finger region of CR3, which binds TBP, is not needed to bind these TAFs. We mapped the E1A-binding sites on hTAFII250 to an internal region that contains a number of structural motifs, including an HMG box, a bromodomain, and direct repeats. This represents the first demonstration that hTAFII250 may serve as a target of a transcriptional activator. We also mapped the E1A binding on dTAFII110 to its C-terminal region. This is of significance since, by contrast, Sp1-mediated activation requires binding to the N-terminal domain of dTAFII110. Thus, distinct surfaces of dTAFII110 can serve as target sites for different activators. Our results indicate that E1A may activate transcription, in part, through direct contacts of the CR3 subdomains with selected components of the TFIID complex.


Sign in / Sign up

Export Citation Format

Share Document