scholarly journals The Plant NF-Y DNA Matrix In Vitro and In Vivo

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 406 ◽  
Author(s):  
Nerina Gnesutta ◽  
Matteo Chiara ◽  
Andrea Bernardini ◽  
Matteo Balestra ◽  
David S. Horner ◽  
...  

Nuclear Factor Y (NF-Y) is an evolutionarily conserved trimer formed by a Histone-Fold Domain (HFD) heterodimeric module shared by core histones, and the sequence-specific NF-YA subunit. In plants, the genes encoding each of the three subunits have expanded in number, giving rise to hundreds of potential trimers. While in mammals NF-Y binds a well-characterized motif, with a defined matrix centered on the CCAAT box, the specificity of the plant trimers has yet to be determined. Here we report that Arabidopsis thaliana NF-Y trimeric complexes, containing two different NF-YA subunits, bind DNA in vitro with similar affinities. We assayed precisely sequence-specificity by saturation mutagenesis, and analyzed genomic DNA sites bound in vivo by selected HFDs. The plant NF-Y CCAAT matrix is different in nucleotides flanking CCAAT with respect to the mammalian matrix, in vitro and in vivo. Our data point to flexible DNA-binding rules by plant NF-Ys, serving the scope of adapting to a diverse audience of genomic motifs.

2001 ◽  
Vol 183 (2) ◽  
pp. 536-544 ◽  
Author(s):  
Philip E. Boucher ◽  
Mei-Shin Yang ◽  
Deanna M. Schmidt ◽  
Scott Stibitz

ABSTRACT The BvgA-BvgS two-component signal transduction system regulates expression of virulence factors in Bordetella pertussis. The BvgA response regulator activates transcription by binding to target promoters, which include those for the genes encoding filamentous hemagglutinin (fha) and pertussis toxin (ptx). We have previously shown that at both promoters the phosphorylated form of BvgA binds multiple high- and low-affinity sites. Specifically, at the fha promoter, we proposed that there may be high- and a low-affinity binding sites for the BvgA dimer. In our present investigation, we used DNA binding analyses and in vitro and in vivo assays of promoters with substitutions and deletions to support and extend this hypothesis. Our observations indicate that (i) binding of BvgA∼P to a primary (high-affinity) site and a secondary binding region (lower affinity) is cooperative, (ii) although both the primary binding site and the secondary binding region are required for full activity of the wild-type (undeleted) promoter, deletion of two helical turns within the secondary binding region can produce a fully active or hyperactive promoter, and (iii) BvgA binding to the secondary binding region shows limited DNA sequence specificity.


2021 ◽  
Author(s):  
Alonso J Pardal ◽  
Andrew J Bowman

Core histones package chromosomal DNA and regulate genomic transactions, with their import and deposition involving a dedicated repertoire of molecular chaperones. Histones H3 and H4 have been predominantly characterised as obligate heterodimers, however, recent findings have alluded to the existence of a significant pool of monomeric histone H3 in the nucleoplasm. Using a combination of in vitro and in vivo experiments, here we show that monomeric H3 and H4 use an Importin 5 (Imp5) dependent pathway for their nuclear import, distinct from Importin 4 (Imp4) previously described for H3-H4 dimers. Using mutants that disrupt the histone fold, we show monomeric H3 loses its interaction with Imp4, but retains interactions with Imp5 and the chaperone NASP. H4 monomeric mutants similarly bind Imp5 and not Imp4, however, they lose interaction with NASP, retaining their interaction with the HAT1-RBBP7 complex instead. In vitro experiments revealed that Imp5 and NASP are mutually exclusive in their binding, suggesting a facilitated hand-off mechanism. Furthermore, new H3 accumulates rapidly in a NASP-bound complex after nuclear translocation. NASP can assemble into three distinct co-chaperoning complexes, including a novel complex containing NASP, H3 and the putative ubiquitin ligase UBR7, a NASP-H3-H4-RBBP7 subcomplex and the previously characterised NASP-H3-H4-ASF1-HAT1-RBBP7 multi-chaperoning complex. Here we propose an alternative import pathway and folding mechanism for monomeric H3 and H4 that involves Imp5, rather than Imp4, and hands off to nuclear chaperones NASP, RBBP7 and HAT1.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


2005 ◽  
Vol 25 (3) ◽  
pp. 945-957 ◽  
Author(s):  
M. M. Robinson ◽  
G. Yatherajam ◽  
R. T. Ranallo ◽  
A. Bric ◽  
M. R. Paule ◽  
...  

ABSTRACT TFIIA interacts with TFIID via association with TATA binding protein (TBP) and TBP-associated factor 11 (TAF11). We previously identified a mutation in the small subunit of TFIIA (toa2-I27K) that is defective for interaction with TAF11. To further explore the functional link between TFIIA and TAF11, the toa2-I27K allele was utilized in a genetic screen to isolate compensatory mutants in TAF11. Analysis of these compensatory mutants revealed that the interaction between TAF11 and TFIIA involves two distinct regions of TAF11: the highly conserved histone fold domain and the N-terminal region. Cells expressing a TAF11 allele defective for interaction with TFIIA exhibit conditional growth phenotypes and defects in transcription. Moreover, TAF11 imparts changes to both TFIIA-DNA and TBP-DNA contacts in the context of promoter DNA. These alterations appear to enhance the formation and stabilization of the TFIIA-TBP-DNA complex. Taken together, these studies provide essential information regarding the molecular organization of the TAF11-TFIIA interaction and define a mechanistic role for this association in the regulation of gene expression in vivo.


2015 ◽  
Vol 12 (110) ◽  
pp. 20150589 ◽  
Author(s):  
Maria C. Z. Meneghetti ◽  
Ashley J. Hughes ◽  
Timothy R. Rudd ◽  
Helena B. Nader ◽  
Andrew K. Powell ◽  
...  

Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro , ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed.


2001 ◽  
Vol 21 (15) ◽  
pp. 5109-5121 ◽  
Author(s):  
Yann-Gaël Gangloff ◽  
Jean-Christophe Pointud ◽  
Sylvie Thuault ◽  
Lucie Carré ◽  
Christophe Romier ◽  
...  

ABSTRACT The RNA polymerase II transcription factor TFIID comprises the TATA binding protein (TBP) and a set of TBP-associated factors (TAFIIs). TFIID has been extensively characterized for yeast, Drosophila, and humans, demonstrating a high degree of conservation of both the amino acid sequences of the constituent TAFIIs and overall molecular organization. In recent years, it has been assumed that all the metazoan TAFIIs have been identified, yet no metazoan homologues of yeast TAFII47 (yTAFII47) and yTAFII65 are known. Both of these yTAFIIs contain a histone fold domain (HFD) which selectively heterodimerizes with that of yTAFII25. We have cloned a novel mouse protein, TAFII140, containing an HFD and a plant homeodomain (PHD) finger, which we demonstrated by immunoprecipitation to be a mammalian TFIID component. TAFII140 shows extensive sequence similarity toDrosophila BIP2 (dBIP2) (dTAFII155), which we also show to be a component of DrosophilaTFIID. These proteins are metazoan homologues of yTAFII47 as their HFDs selectively heterodimerize with dTAFII24 and human TAFII30, metazoan homologues of yTAFII25. We further show that yTAFII65 shares two domains with theDrosophila Prodos protein, a recently described potential dTAFII. These conserved domains are critical for yTAFII65 function in vivo. Our results therefore identify metazoan homologues of yTAFII47 and yTAFII65.


2008 ◽  
Vol 205 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
Brice Sperandio ◽  
Béatrice Regnault ◽  
Jianhua Guo ◽  
Zhi Zhang ◽  
Samuel L. Stanley ◽  
...  

Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine.


2019 ◽  
Author(s):  
Cassandra K. Hayne ◽  
Casey A. Schmidt ◽  
A. Gregory Matera ◽  
Robin E. Stanley

ABSTRACTThe splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34, and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1’s role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.


2016 ◽  
Author(s):  
Claudia Hernandez-Armenta ◽  
David Ochoa ◽  
Emanuel Gonçalves ◽  
Julio Saez-Rodriguez ◽  
Pedro Beltrao

AbstractMotivationPhosphoproteomic experiments are increasingly used to study the changes in signalling occurring across different conditions. It has been proposed that changes in phosphorylation of kinase target sites can be used to infer when a kinase activity is under regulation. However, these approaches have not yet been benchmarked due to a lack of appropriate benchmarking strategies.ResultsWe curated public phosphoproteomic experiments to identify a gold standard dataset containing a total of 184 kinase-condition pairs where regulation is expected to occur. A list of kinase substrates was compiled and used to estimate changes in kinase activities using the following methods: Z-test, Kolmogorov Smirnov test, Wilcoxon rank sum test, gene set enrichment analysis (GSEA), and a multiple linear regression model (MLR). We also tested weighted variants of the Z-test, and GSEA that include information on kinase sequence specificity as proxy for affinity. Finally, we tested how the number of known substrates and the type of evidence (in vivo, in vitro or in silico) supporting these influence the predictions.ConclusionsMost models performed well with the Z-test and the GSEA performing best as determined by the area under the ROc curve (Mean AUC=0.722). Weighting kinase targets by the kinase target sequence preference improves the results only marginally. However, the number of known substrates and the evidence supporting the interactions has a strong effect on the predictions.


Sign in / Sign up

Export Citation Format

Share Document