scholarly journals Premature Translation of oskar in Oocytes Lacking the RNA-Binding Protein Bicaudal-C

1998 ◽  
Vol 18 (8) ◽  
pp. 4855-4862 ◽  
Author(s):  
Emma E. Saffman ◽  
Sylvia Styhler ◽  
Katherine Rother ◽  
Weihua Li ◽  
Stéphane Richard ◽  
...  

ABSTRACT Bicaudal-C (Bic-C) is required duringDrosophila melanogaster oogenesis for several processes, including anterior-posterior patterning. The gene encodes a protein with five copies of the KH domain, a motif found in a number of RNA-binding proteins. Using antibodies raised against the BIC-C protein, we show that multiple isoforms of the protein exist in ovaries and that the protein, like the RNA, accumulates in the developing oocyte early in oogenesis. BIC-C protein expressed in mammalian cells can bind RNA in vitro, and a point mutation in one of the KH domains that causes a strong Bic-C phenotype weakens this binding. In addition, oskar translation commences prior to posterior localization of oskar RNA inBic-C − oocytes, indicating thatBic-C may regulate oskar translation during oogenesis.

Author(s):  
Stephanie K. Jones ◽  
Jennifer Rha ◽  
Sarah Kim ◽  
Kevin J. Morris ◽  
Omotola F. Omotade ◽  
...  

AbstractZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), an evolutionarily conserved member of a class of tandem zinc finger (CCCH) polyadenosine (polyA) RNA binding proteins, is associated with a form of heritable, nonsyndromic autosomal recessive intellectual disability. Previous studies of a loss of function mouse model, Zc3h14Δex13/Δex13, provide evidence that ZC3H14 is essential for proper brain function, specifically for working memory. To expand on these findings, we analyzed the dendrites and dendritic spines of hippocampal neurons from Zc3h14Δex13/Δex13 mice, both in situ and in vitro. These studies reveal that loss of ZC3H14 is associated with a decrease in total spine density in hippocampal neurons in vitro as well as in the dentate gyrus of 5-month old mice analyzed in situ. This reduction in spine density in vitro results from a decrease in the number of mushroom-shaped spines, which is rescued by exogenous expression of ZC3H14. We next performed biochemical analyses of synaptosomes prepared from whole wild-type and Zc3h14Δex13/Δex13 mouse brains to determine if there are changes in steady state levels of postsynaptic proteins upon loss of ZC3H14. We found that ZC3H14 is present within synaptosomes and that a crucial postsynaptic protein, CaMKIIα, is significantly increased in these synaptosomal fractions upon loss of ZC3H14. Together, these results demonstrate that ZC3H14 is necessary for proper dendritic spine density in cultured hippocampal neurons and in some regions of the mouse brain. These findings provide insight into how a ubiquitously expressed RNA binding protein leads to neuronal-specific defects that result in brain dysfunction.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


1998 ◽  
Vol 18 (8) ◽  
pp. 4863-4871 ◽  
Author(s):  
Taiping Chen ◽  
Stéphane Richard

ABSTRACT Qk1 is a member of the KH domain family of proteins that includes Sam68, GRP33, GLD-1, SF1, and Who/How. These family members are RNA binding proteins that contain an extended KH domain embedded in a larger domain called the GSG (for GRP33–Sam68–GLD-1) domain. An ethylnitrosourea-induced point mutation in the Qk1 GSG domain alters glutamic acid 48 to a glycine and is known to be embryonically lethal in mice. The function of Qk1 and the GSG domain as well as the reason for the lethality are unknown. Here we demonstrate that the Qk1 GSG domain mediates RNA binding and Qk1 self-association. By using in situ chemical cross-linking studies, we showed that the Qk1 proteins exist as homodimers in vivo. The Qk1 self-association region was mapped to amino acids 18 to 57, a region predicted to form coiled coils. Alteration of glutamic acid 48 to glycine (E➤G) in the Qk1 GSG domain (producing protein Qk1:E➤G) abolishes self-association but has no effect on the RNA binding activity. The expression of Qk1 or Qk1:E➤G in NIH 3T3 cells induces cell death by apoptosis. Approximately 90% of the remaining transfected cells are apoptotic 48 h after transfection. Qk1:E➤G was consistently more potent at inducing apoptosis than was wild-type Qk1. These results suggest that the mousequaking lethality (E➤G) occurs due to the absence of Qk1 self-association mediated by the GSG domain.


2018 ◽  
Vol 217 (4) ◽  
pp. 1303-1318 ◽  
Author(s):  
Benedikt Niewidok ◽  
Maxim Igaev ◽  
Abel Pereira da Graca ◽  
Andre Strassner ◽  
Christine Lenzen ◽  
...  

Stress granules (SGs) are cytosolic, nonmembranous RNA–protein complexes. In vitro experiments suggested that they are formed by liquid–liquid phase separation; however, their properties in mammalian cells remain unclear. We analyzed the distribution and dynamics of two paradigmatic RNA-binding proteins (RBPs), Ras GTPase-activating protein SH3-domain–binding protein (G3BP1) and insulin-like growth factor II mRNA-binding protein 1 (IMP1), with single-molecule resolution in living neuronal cells. Both RBPs exhibited different exchange kinetics between SGs. Within SGs, single-molecule localization microscopy revealed distributed hotspots of immobilized G3BP1 and IMP1 that reflect the presence of relatively immobile nanometer-sized nanocores. We demonstrate alternating binding in nanocores and anomalous diffusion in the liquid phase with similar characteristics for both RBPs. Reduction of low-complexity regions in G3BP1 resulted in less detectable mobile molecules in the liquid phase without change in binding in nanocores. The data provide direct support for liquid droplet behavior of SGs in living cells and reveal transient binding of RBPs in nanocores. Our study uncovers a surprising disconnect between SG partitioning and internal diffusion and interactions of RBPs.


1997 ◽  
Vol 17 (10) ◽  
pp. 5707-5718 ◽  
Author(s):  
T Chen ◽  
B B Damaj ◽  
C Herrera ◽  
P Lasko ◽  
S Richard

Sam68 is a member of a growing family of proteins that contain a single KH domain embedded in a larger conserved domain of approximately 170 amino acids. Loops 1 and 4 of this KH domain family are longer than the corresponding loops in other KH domains and contain conserved residues. KH domains are protein motifs that are involved in RNA binding and are often present in multiple copies. Here we demonstrate by coimmunoprecipitation studies that Sam68 self-associated and that cellular RNA was required for the association. Deletion studies demonstrated that the Sam68 KH domain loops 1 and 4 were required for self-association. The Sam68 interaction was also observed in Saccharomyces cerevisiae by the two-hybrid system. In situ chemical cross-linking studies in mammalian cells demonstrated that Sam68 oligomerized in vivo. These Sam68 complexes bound homopolymeric RNA and the SH3 domains of p59fyn and phospholipase Cgamma1 in vitro, demonstrating that Sam68 associates with RNA and signaling molecules as a multimer. The formation of the Sam68 complex was inhibited by p59fyn, suggesting that tyrosine phosphorylation regulates Sam68 oligomerization. Other Sam68 family members including Artemia salina GRP33, Caenorhabditis elegans GLD-1, and mouse Qk1 also oligomerized. In addition, Sam68, GRP33, GLD-1, and Qk1 associated with other KH domain proteins such as Bicaudal C. These observations indicate that the single KH domain found in the Sam68 family, in addition to mediating protein-RNA interactions, mediates protein-protein interactions.


2019 ◽  
Vol 47 (17) ◽  
pp. 9386-9399 ◽  
Author(s):  
Shreekara Gopalakrishna ◽  
Sarah F Pearce ◽  
Adam M Dinan ◽  
Florian A Schober ◽  
Miriam Cipullo ◽  
...  

Abstract In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain—an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.


1995 ◽  
Vol 15 (3) ◽  
pp. 1324-1332 ◽  
Author(s):  
X R Bustelo ◽  
K L Suen ◽  
W M Michael ◽  
G Dreyfuss ◽  
M Barbacid

We have used the yeast two-hybrid system to isolate proteins that interact with the carboxy-terminal SH3-SH2-SH3 region of Vav. One of the clones encoded heterogeneous nuclear ribonucleoprotein K (hnRNP K), a poly(rC)-specific RNA-binding protein. The interaction between Vav and hnRNP K involves the binding of the most carboxy-terminal SH3 domain of Vav to two proline-rich sequences present in the central region of hnRNP K. Overexpression of Vav in mouse fibroblasts leads to the formation of a stable complex with the endogenous hnRNP K and to the preferential redistribution of this protein to the cytoplasmic fraction. More importantly, Vav and hnRNP K proteins also interact in hematopoietic cells. In addition, Vav associates in vitro with a second 45-kDa poly(rC)-specific RNA-binding protein via its SH3-SH2-SH3 region. These results suggest that Vav plays a role in the regulation of the late steps of RNA biogenesis by modulating the function of poly(rC)-specific ribonucleoproteins.


2021 ◽  
Author(s):  
Sean R Kundinger ◽  
Eric B Dammer ◽  
Luming Yin ◽  
Cheyenne Hurst ◽  
Lingyan Ping ◽  
...  

Post-translational modifications (PTMs) within splicing factor RNA-binding proteins (RBPs), such as phosphorylation, regulate several critical steps in RNA metabolism including spliceosome assembly, alternative splicing and mRNA export. Notably, the arginine-/serine-rich (RS) domains in SR proteins are densely modified by phosphorylation compared with the remainder of the proteome. Previously, we showed that dephosphorylation of SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich to the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. Phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high molecular weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine-/arginine protein kinase 2 (SRPK2) in vitro prevented high molecular weight SRSF2 species formation. Furthermore, we pharmacologically inhibited SRPKs in mammalian cells and observed increased cytoplasmic granules as well as the formation of cytoplasmic SRSF2 tubular structures that associate with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.


1997 ◽  
Vol 137 (4) ◽  
pp. 899-908 ◽  
Author(s):  
Hiroyuki Nishiyama ◽  
Katsuhiko Itoh ◽  
Yoshiyuki Kaneko ◽  
Masamichi Kishishita ◽  
Osamu Yoshida ◽  
...  

In response to low ambient temperature, mammalian cells as well as microorganisms change various physiological functions, but the molecular mechanisms underlying these adaptations are just beginning to be understood. We report here the isolation of a mouse cold-inducible RNA-binding protein (cirp) cDNA and investigation of its role in cold-stress response of mammalian cells. The cirp cDNA encoded an 18-kD protein consisting of an amino-terminal RNAbinding domain and a carboxyl-terminal glycine-rich domain and exhibited structural similarity to a class of stress-induced RNA-binding proteins found in plants. Immunofluorescence microscopy showed that CIRP was localized in the nucleoplasm of BALB/3T3 mouse fibroblasts. When the culture temperature was lowered from 37 to 32°C, expression of CIRP was induced and growth of BALB/3T3 cells was impaired as compared with that at 37°C. By suppressing the induction of CIRP with antisense oligodeoxynucleotides, this impairment was alleviated, while overexpression of CIRP resulted in impaired growth at 37°C with prolongation of G1 phase of the cell cycle. These results indicate that CIRP plays an essential role in cold-induced growth suppression of mouse fibroblasts. Identification of CIRP may provide a clue to the regulatory mechanisms of cold responses in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document