scholarly journals C6orf203 is an RNA-binding protein involved in mitochondrial protein synthesis

2019 ◽  
Vol 47 (17) ◽  
pp. 9386-9399 ◽  
Author(s):  
Shreekara Gopalakrishna ◽  
Sarah F Pearce ◽  
Adam M Dinan ◽  
Florian A Schober ◽  
Miriam Cipullo ◽  
...  

Abstract In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain—an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.

2020 ◽  
Author(s):  
Ya Qun Guan ◽  
Xuan Yu Meng ◽  
Xiao Di Liang ◽  
Ting Ting Hu ◽  
Nurbierye Nuermamati ◽  
...  

Abstract Background: Adipogenesis is an essential process in organismal development and plays a significant role in adipose tissue homeostasis. Post-transcriptional regulation of gene expression plays a key role in adipogenesis and involves many RNA-binding proteins (RBPs). In mammals, Staufen1 (STAU1) is a conserved RBP(RNA Binding Protein )consisting of several dsRBP (double strand RNA). STAU1 plays an important role in the Stau1-mediated mRNA decay (SMD) pathway, which is related to adipocyte formation, myocyte development, and neural differentiation. Klf16 (Kruppel like transcription factor 16) is a negative regulator that inhibits adipocyte differentiation. AIM:This study was conducted to determine the role of Klf16 in adipocyte differentiation in the context of the SMD pathway.Methods: 3T3-L1 cells were induced and cultured in vitro by cocktail method, Knockdown and Overexpression of STAU1 and KLF16. Then, adipocyte differentiation andexpression of adipogenic-related genes (STAU1, KLF16, PPARγ, and Lipin1) were measured by RT-qPCR and Western blot.RNA immunoprecipitation (RIP) method verified that STAU1 protein can bind to KLF16.Results: The results revealed that STAU1 regulates Klf16 expression at the post-transcriptional level during the adipogenic differentiation of 3T3-L1 cells.STAU1 candirectly bind the 3′UTR of Klf16 mRNA. Klf16 mRNA was found to be degraded through the SMD pathway, thus promoting adipocyte differentiation.Conclusions: In this study, the mechanism of adipocyte differentiation regulation at the post-transcriptional level is demonstrated, and Klf16 is shown as a substrate of the SMD pathway, thus providing new insights into adipogenesis.


Author(s):  
Stephanie K. Jones ◽  
Jennifer Rha ◽  
Sarah Kim ◽  
Kevin J. Morris ◽  
Omotola F. Omotade ◽  
...  

AbstractZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), an evolutionarily conserved member of a class of tandem zinc finger (CCCH) polyadenosine (polyA) RNA binding proteins, is associated with a form of heritable, nonsyndromic autosomal recessive intellectual disability. Previous studies of a loss of function mouse model, Zc3h14Δex13/Δex13, provide evidence that ZC3H14 is essential for proper brain function, specifically for working memory. To expand on these findings, we analyzed the dendrites and dendritic spines of hippocampal neurons from Zc3h14Δex13/Δex13 mice, both in situ and in vitro. These studies reveal that loss of ZC3H14 is associated with a decrease in total spine density in hippocampal neurons in vitro as well as in the dentate gyrus of 5-month old mice analyzed in situ. This reduction in spine density in vitro results from a decrease in the number of mushroom-shaped spines, which is rescued by exogenous expression of ZC3H14. We next performed biochemical analyses of synaptosomes prepared from whole wild-type and Zc3h14Δex13/Δex13 mouse brains to determine if there are changes in steady state levels of postsynaptic proteins upon loss of ZC3H14. We found that ZC3H14 is present within synaptosomes and that a crucial postsynaptic protein, CaMKIIα, is significantly increased in these synaptosomal fractions upon loss of ZC3H14. Together, these results demonstrate that ZC3H14 is necessary for proper dendritic spine density in cultured hippocampal neurons and in some regions of the mouse brain. These findings provide insight into how a ubiquitously expressed RNA binding protein leads to neuronal-specific defects that result in brain dysfunction.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


1995 ◽  
Vol 15 (3) ◽  
pp. 1324-1332 ◽  
Author(s):  
X R Bustelo ◽  
K L Suen ◽  
W M Michael ◽  
G Dreyfuss ◽  
M Barbacid

We have used the yeast two-hybrid system to isolate proteins that interact with the carboxy-terminal SH3-SH2-SH3 region of Vav. One of the clones encoded heterogeneous nuclear ribonucleoprotein K (hnRNP K), a poly(rC)-specific RNA-binding protein. The interaction between Vav and hnRNP K involves the binding of the most carboxy-terminal SH3 domain of Vav to two proline-rich sequences present in the central region of hnRNP K. Overexpression of Vav in mouse fibroblasts leads to the formation of a stable complex with the endogenous hnRNP K and to the preferential redistribution of this protein to the cytoplasmic fraction. More importantly, Vav and hnRNP K proteins also interact in hematopoietic cells. In addition, Vav associates in vitro with a second 45-kDa poly(rC)-specific RNA-binding protein via its SH3-SH2-SH3 region. These results suggest that Vav plays a role in the regulation of the late steps of RNA biogenesis by modulating the function of poly(rC)-specific ribonucleoproteins.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1891 ◽  
Author(s):  
Raphaëlle Grifone ◽  
Ming Shao ◽  
Audrey Saquet ◽  
De-Li Shi

RNA-binding proteins control the metabolism of RNAs at all stages of their lifetime. They are critically required for the post-transcriptional regulation of gene expression in a wide variety of physiological and pathological processes. Rbm24 is a highly conserved RNA-binding protein that displays strongly regionalized expression patterns and exhibits dynamic changes in subcellular localization during early development. There is increasing evidence that it acts as a multifunctional regulator to switch cell fate determination and to maintain tissue homeostasis. Dysfunction of Rbm24 disrupts cell differentiation in nearly every tissue where it is expressed, such as skeletal and cardiac muscles, and different head sensory organs, but the molecular events that are affected may vary in a tissue-specific, or even a stage-specific manner. Recent works using different animal models have uncovered multiple post-transcriptional regulatory mechanisms by which Rbm24 functions in key developmental processes. In particular, it represents a major splicing factor in muscle cell development, and plays an essential role in cytoplasmic polyadenylation during lens fiber cell terminal differentiation. Here we review the advances in understanding the implication of Rbm24 during development and disease, by focusing on its regulatory roles in physiological and pathological conditions.


2003 ◽  
Vol 23 (14) ◽  
pp. 4972-4982 ◽  
Author(s):  
Stavroula Mili ◽  
Serafín Piñol-Roma

ABSTRACT LRP130 (also known as LRPPRC) is an RNA-binding protein that is a constituent of postsplicing nuclear RNP complexes associated with mature mRNA. It belongs to a growing family of pentatricopeptide repeat (PPR) motif-containing proteins, several of which have been implicated in organellar RNA metabolism. We show here that only a fraction of LRP130 proteins are in nuclei and are directly bound in vivo to at least some of the same RNA molecules as the nucleocytoplasmic shuttle protein hnRNP A1. The majority of LRP130 proteins are located within mitochondria, where they are directly bound to polyadenylated RNAs in vivo. In vitro, LRP130 binds preferentially to polypyrimidines. This RNA-binding activity maps to a domain in its C-terminal region that does not contain any previously described RNA-binding motifs and that contains only 2 of the 11 predicted PPR motifs. Therefore, LRP130 is a novel type of RNA-binding protein that associates with both nuclear and mitochondrial mRNAs and as such is a potential candidate for coordinating nuclear and mitochondrial gene expression. These findings provide the first identification of a mammalian protein directly bound to mitochondrial RNA in vivo and provide a possible molecular explanation for the recently described association of mutations in LRP130 with cytochrome c oxidase deficiency in humans.


2021 ◽  
Vol 9 (5) ◽  
pp. 986
Author(s):  
Camila Oliveira ◽  
André P. Gerber ◽  
Samuel Goldenberg ◽  
Lysangela R. Alves

RNA-binding proteins (RBPs) participate in several steps of post-transcriptional regulation of gene expression, such as splicing, messenger RNA transport, mRNA localization, and translation. Gene-expression regulation in trypanosomatids occurs primarily at the post-transcriptional level, and RBPs play important roles in the process. Here, we characterized the RBP TcSgn1, which contains one RNA recognition motif (RRM). TcSgn1 is a close ortholog of yeast Saccharomyces cerevisiae protein ScSgn1, which plays a role in translational regulation in the cytoplasm. We found that TcSgn1 in Trypanosoma cruzi is localized in the nucleus in exponentially growing epimastigotes. By performing immunoprecipitation assays of TcSgn1, we identified hundreds of mRNAs associated with the protein, a significant fraction of them coding for nucleic acids binding, transcription, and endocytosis proteins. In addition, we show that TcSgn1 is capable of interacting directly with the poly(A) tail of the mRNAs. The study of parasites under nutritional stress showed that TcSgn1 was localized in cytoplasmic granules in addition to localizing in the nucleus. Similar to ScSgn1, we observed that TcSgn1 also interacts with the PABP1 protein, suggesting that this protein may play a role in regulating gene expression in T. cruzi. Taken together, our results show that RNA-binding protein TcSgn1 is part of ribonucleoprotein complexes associated with nuclear functions, stress response, and RNA metabolism.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


2011 ◽  
Vol 22 (16) ◽  
pp. 2875-2885 ◽  
Author(s):  
Mai Nguyen Chi ◽  
Jacques Auriol ◽  
Bernard Jégou ◽  
Dimitris L. Kontoyiannis ◽  
James M.A. Turner ◽  
...  

Posttranscriptional mechanisms are crucial to regulate spermatogenesis. Accurate protein synthesis during germ cell development relies on RNA binding proteins that control the storage, stability, and translation of mRNAs in a tightly and temporally regulated manner. Here, we focused on the RNA binding protein Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) known to be a key regulator of posttranscriptional regulation in somatic cells but the function of which during gametogenesis has never been investigated. In this study, we have used conditional loss- and gain-of-function approaches to address this issue in mice. We show that targeted deletion of HuR specifically in germ cells leads to male but not female sterility. Mutant males are azoospermic because of the extensive death of spermatocytes at meiotic divisions and failure of spermatid elongation. The latter defect is also observed upon HuR overexpression. To elucidate further the molecular mechanisms underlying spermatogenesis defects in HuR-deleted and -overexpressing testes, we undertook a target gene approach and discovered that heat shock protein (HSP)A2/HSP70-2, a crucial regulator of spermatogenesis, was down-regulated in both situations. HuR specifically binds hspa2 mRNA and controls its expression at the translational level in germ cells. Our study provides the first genetic evidence of HuR involvement during spermatogenesis and reveals Hspa2 as a target for HuR.


Sign in / Sign up

Export Citation Format

Share Document