scholarly journals A Transcriptional Switch in the Expression of Yeast Tricarboxylic Acid Cycle Genes in Response to a Reduction or Loss of Respiratory Function

1999 ◽  
Vol 19 (10) ◽  
pp. 6720-6728 ◽  
Author(s):  
Zhengchang Liu ◽  
Ronald A. Butow

ABSTRACT The Hap2,3,4,5p transcription complex is required for expression of many mitochondrial proteins that function in electron transport and the tricarboxylic acid (TCA) cycle. We show that as the cells’ respiratory function is reduced or eliminated, the expression of four TCA cycle genes, CIT1, ACO1, IDH1, andIDH2, switches from HAP control to control by three genes, RTG1, RTG2, and RTG3. The expression of four additional TCA cycle genes downstream ofIDH1 and IDH2 is independent of theRTG genes. We have previously shown that theRTG genes control the retrograde pathway, defined as a change in the expression of a subset of nuclear genes, e.g., the glyoxylate cycle CIT2 gene, in response to changes in the functional state of mitochondria. We show that thecis-acting sequence controlling RTG-dependent expression of CIT1 includes an R box element, GTCAC, located 70 bp upstream of the Hap2,3,4,5p binding site in theCIT1 upstream activation sequence. The R box is a binding site for Rtg1p-Rtg3p, a heterodimeric, basic helix-loop-helix/leucine zipper transcription factor complex. We propose that in cells with compromised mitochondrial function, the RTG genes take control of the expression of genes leading to the synthesis of α-ketoglutarate to ensure that sufficient glutamate is available for biosynthetic processes and that increased flux of the glyoxylate cycle, via elevated CIT2 expression, provides a supply of metabolites entering the TCA cycle sufficient to support anabolic pathways. Glutamate is a potent repressor of RTG-dependent expression of genes encoding both mitochondrial and nonmitochondrial proteins, suggesting that it is a specific feedback regulator of the RTG system.

1969 ◽  
Vol 15 (10) ◽  
pp. 1207-1212 ◽  
Author(s):  
J. C. Galbraith ◽  
J. E. Smith

The activities of certain enzymes of the tricarboxylic acid (TCA) cycle and the glyoxylate cycle (GLC) varied during growth of Aspergillus niger as a function of the stage of the life cycle and of the growth medium. Isocitrate dehydrogenase (carboxylating) and isocitrate lyase each showed a marked increase in activity prior to sporulation. There were no similar increases in vegetative cultures. It is proposed that isocitrate lyase is functional in glycine synthesis and that a source of glyoxylate may be indispensable to the expression of sporulation.


1959 ◽  
Vol 5 (1) ◽  
pp. 1-8 ◽  
Author(s):  
N. B. Madsen ◽  
R. M. Hochster

Cell-free extracts of Xanthomonas phaseoli contain the individual enzymes of the tricarboxylic acid cycle, and it is suggested that this is the main pathway for the terminal oxidation of carbohydrate in this organism. X. phaseoli can grow on a medium containing acetate as the sole source of carbon. Cell-free extracts of such acetate-grown organisms contain the enzymes of the glyoxylate cycle, and it is concluded that the operation of this cycle permits the initial stages of synthesis of complex cell material from acetate at a rate sufficiently high to account for the observed rate of growth on the acetate medium. The two enzymes required to modify a tricarboxylic acid cycle into a glyoxylate cycle are present in very small amounts (malate synthetase) or absent entirely (isocitritase) in extracts of glucose-grown X. phaseoli.


Author(s):  
Shu Moriyama ◽  
Kazuya Nishio ◽  
Tsunehiro Mizushima

Malate dehydrogenase (MDH), a carbohydrate and energy metabolism enzyme in eukaryotes, catalyzes the interconversion of malate to oxaloacetate (OAA) in conjunction with that of nicotinamide adenine dinucleotide (NAD+) to NADH. Three isozymes of MDH have been reported in Saccharomyces cerevisiae: MDH1, MDH2 and MDH3. MDH1 is a mitochondrial enzyme and a member of the tricarboxylic acid cycle, whereas MDH2 is a cytosolic enzyme that functions in the glyoxylate cycle. MDH3 is a glyoxysomal enzyme that is involved in the reoxidation of NADH, which is produced during fatty-acid β-oxidation. The affinity of MDH3 for OAA is lower than those of MDH1 and MDH2. Here, the crystal structures of yeast apo MDH3, the MDH3–NAD+ complex and the MDH3–NAD+–OAA ternary complex were determined. The structure of the ternary complex suggests that the active-site loop is in the open conformation, differing from the closed conformations in mitochondrial and cytosolic malate dehydrogenases.


1966 ◽  
Vol 12 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
Margaret von Tigerstrom ◽  
J. J. R. Campbell

The enzymes of the glyoxylate cycle, the tricarboxylic acid cycle, glucose oxidation, and hydrogen transport were measured in extracts of Pseudomonas aeruginosa grown with glucose, α-ketoglutarate, or acetate as sole carbon source. The specific activity of isocitritase was increased 25-fold by growth on acetate whereas malate synthetase was increased only 4-fold. All of the enzymes of glucose metabolism, operative at the hexose level, were inducible. The enzymes of the tricarboxylic acid cycle were present under all conditions of growth but extracts from acetate-grown cells contained only one-quarter of the fumarase and pyruvic oxidase activity and half the malate-oxidizing activity of the other extracts. Transhydrogenase, NADH oxidase, and NADPH oxidase activities were similar in each type of extracts. Most of the enzymes were present in the soluble cytoplasm, exceptions being glucose oxidase, succinic dehydrogenase, and NADH oxidase.


1973 ◽  
Vol 134 (2) ◽  
pp. 607-616 ◽  
Author(s):  
Nicole Bégin-Heick

Results are presented on the intracellular localization of some of the enzymes of gluconeogenesis, of the tricarboxylic acid cycle and of related enzymes in Astasia and Euglena grown with various substrates. The results indicate the particulate nature of at least part of the malate synthase of Astasia and of part of the malate synthase and isocitrate lyase in Euglena. However, the presence of glyoxysomes (microbodies) in Astasia and Euglena is still open to question, since it has not, so far, been possible to separate the enzymes of the glyoxylate cycle from succinate dehydrogenase in the particulate fraction.


1967 ◽  
Vol 45 (6) ◽  
pp. 863-872
Author(s):  
R. M. R. Branion ◽  
B. F. J. Caddick ◽  
W. B. McConnell

The problem of interpreting data on the distribution of isotopic carbon in intermediates of the tricarboxylic acid cycle and the glyoxylate cycle is discussed. An effort is made to examine mathematically the effects of cycling on the distribution of isotope in the carbon skeletons of intermediates of these cycles. Consideration is given to the individual cycles and to combinations of the two. Because the systems are highly complex, a number of simplifying assumptions are made which limit the usefulness of the equations derived for dealing with experimental data. However, some significant features of labelling that result from combined operation of the two cycles are emphasized, which should make it possible to estimate their relative contributions more reliably than by qualitative inspection of the data.


1966 ◽  
Vol 44 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Carol A. Peterson ◽  
E. A. Cossins

The kinetics and pathway of ethanol metabolism in endosperm tissues of the germinating castor bean-have been studied by incubating tissue slices with micromolar quantities of ethanol-1-14C and ethanol-2-14C. In short term experiments, ethanol-14C was incorporated into the organic acids and acidic amino acids. When the experimental period was increased up to 1 hour, large amounts of ethanol-2-14C were incorporated into the sugars, and ethanol-1-14C was extensively incorporated into the respiratory carbon dioxide. Incorporation of ethanol-14C was stimulated by incubation of the tissues with glyoxylate. Ethanol metabolism was markedly inhibited by iodoacetate and malonate. These inhibitors also changed the distribution of14C in the products isolated. Isotopic competition studies indicated that ethanol was incorporated into the acids of the glyoxylate and the tricarboxylic acid cycles at rates substantially lower than acetate.The results are interpreted as being consistent with a metabolism of ethanol mainly via the glyoxylate cycle with some cycling of ethanol carbon through the tricarboxylic acid cycle.


The incorporation of isotope from [2- 14 C]ethanol by cultures of the Brannon no. 1 strain of Chlorella vulgaris , growing on ethanol aerobically in the dark, was consistent with the operation of the tricarboxylic acid and glyoxylate cycles. Results obtained with [l- 14 C]acetate, added to similar cultures growing on glucose in the dark or on carbon dioxide in the light, indicated that the glyoxylate cycle did not function under these conditions. However, one of the key enzymes of this cycle, isocitrate lyase, was present in large amounts in extracts of this organism under all conditions of growth; in contrast, isocitrate lyase was inducibly formed by Chlamydomonas reinhardii prior to growth on acetate. No obvious dysfunction of the tricarboxylic acid cycle, which might necessitate the activity of isocitrate lyase during growth on other than C 2 -compounds, was detected in the Brannon no. 1 strain, nor were differences observed between the properties of the enzyme purified from cells grown on acetate and on glucose. But, whereas isocitrate lyase was wholly found in a soluble fraction of the organism after growth on glucose or on carbon dioxide, acetate-grown cells contained a major portion of their isocitrate lyase in a dense, particulate fraction. The Brannon no. 1 strain of Chlorella excreted labelled glycollate during growth in the dark on glucose in the presence of sodium [ 14 C]bicarbonate, but ceased to do so after transfer to acetate growth medium. The Pearsall’s strain of Chlorella , which does not form isocitrate lyase during growth on glucose, did not excrete labelled glycollate under these conditions. These results suggest that the Brannon no. 1 strain of Chlorella contained an active isocitrate lyase under all conditions of growth, but that this enzyme participates in the glyoxylate cycle only when it is incorporated into a particulate structure.


1967 ◽  
Vol 15 (4) ◽  
pp. 202-206
Author(s):  
C. JAMES LOVELACE ◽  
GENE W. MILLER

In vivo effects of fluoride on tricarboxylic acid (TCA) cycle dehydrogenase enzymes of Pelargonium zonale were studied using p-nitro blue tetrazoleum chloride. Plants were exposed to 17 ppb HF, and enzyme activities in treated plants were compared to those in controls. Leaves of control plants were incubated in 5 x 10–3 M sodium fluoride. Injuries observed in fumigation and solution experiments were similar. Leaf tissue subjected to HF or sodium fluoride evidenced less succinic p-nitro blue tetrazoleum reductase activity than did control tissue. Other TCA cycle dehydrogenase enzymes were not observably affected by the fluoride concentrations used in these experiments. Excised leaves cultured in 5 x 10–3 M sodium fluoride exhibited less succinic p-nitro blue tetrazoleum reductase activity after 24 hr than did leaves cultured in 5 x 10–3 M sodium chloride.


2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Xinhua Qi ◽  
Wenlong Yan ◽  
Zhibei Cao ◽  
Mingzhu Ding ◽  
Yingjin Yuan

Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.


Sign in / Sign up

Export Citation Format

Share Document