scholarly journals p73 Function Is Inhibited by Tumor-Derived p53 Mutants in Mammalian Cells

1999 ◽  
Vol 19 (2) ◽  
pp. 1438-1449 ◽  
Author(s):  
Charles J. Di Como ◽  
Christian Gaiddon ◽  
Carol Prives

ABSTRACT The p53 tumor suppressor protein, found mutated in over 50% of all human tumors, is a sequence-specific transcriptional activator. Recent studies have identified a p53 relative, termed p73. We were interested in determining the relative abilities of wild-type and mutant forms of p53 and p73α and -β isoforms to transactivate various p53-responsive promoters. We show that both p73α and p73β activate the transcription of reporters containing a number of p53-responsive promoters in the p53-null cell line H1299. However, a number of significant differences were observed between p53 and p73 and even between p73α and p73β. Additionally, a Saccharomyces cerevisiae-based reporter assay revealed a broad array of transcriptional transactivation abilities by both p73 isoforms at 37°C. Recent data have shown that p73 can associate with p53 by the yeast two-hybrid assay. When we examined complex formation in transfected mammalian cells, we found that p73α coprecipitates with mutant but not wild-type p53. Since many tumor-derived p53 mutants are capable of inhibiting transactivation by wild-type p53, we tested the effects of two representative hot-spot mutants (R175H and R248W) on p73. By cotransfecting p73α along with either p53 mutant and a p53-responsive reporter, we found that both R175H and R248W reduces the transcriptional activity of p73α. This decrease in transcriptional activity is correlated with the reduced ability of p73α to promote apoptosis in the presence of tumor-derived p53 mutants. Our data suggest the possibility that in some tumor cells, an outcome of the expression of mutant p53 protein may be to interfere with the endogenous p73 protein.

1997 ◽  
Vol 17 (5) ◽  
pp. 2806-2815 ◽  
Author(s):  
M Pariat ◽  
S Carillo ◽  
M Molinari ◽  
C Salvat ◽  
L Debüssche ◽  
...  

p53 is a short-lived transcription factor that is frequently mutated in tumor cells. Work by several laboratories has already shown that the ubiquitin-proteasome pathway can largely account for p53 destruction, at least under specific experimental conditions. We report here that, in vitro, wild-type p53 is a sensitive substrate for milli- and microcalpain, which are abundant and ubiquitous cytoplasmic proteases. Degradation was dependent on p53 protein conformation. Mutants of p53 with altered tertiary structure displayed a wide range of susceptibility to calpains, some of them being largely resistant to degradation and others being more sensitive. This result suggests that the different mutants tested here adopt slightly different conformations to which calpains are sensitive but that cannot be discriminated by using monoclonal antibodies such as PAb1620 and PAb240. Inhibition of calpains by using the physiological inhibitor calpastatin leads to an elevation of p53 steady-state levels in cells expressing wild-type p53. Conversely, activation of calpains by calcium ionophore led to a reduction of p53 in mammalian cells, and the effect was blocked by cell-permeant calpain inhibitors. Cotransfection of p53-null cell lines with p53 and calpastatin expression vectors resulted in an increase in p53-dependent transcription activity. Taken together, these data support the idea that calpains may also contribute to the regulation of wild-type p53 protein levels in vivo.


1992 ◽  
Vol 12 (3) ◽  
pp. 1357-1365
Author(s):  
J M Nigro ◽  
R Sikorski ◽  
S I Reed ◽  
B Vogelstein

Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.


2016 ◽  
Vol 113 (35) ◽  
pp. 9822-9827 ◽  
Author(s):  
Jiajun Zhu ◽  
Zhixun Dou ◽  
Morgan A. Sammons ◽  
Arnold J. Levine ◽  
Shelley L. Berger

TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53’s transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma.


1992 ◽  
Vol 12 (3) ◽  
pp. 1357-1365 ◽  
Author(s):  
J M Nigro ◽  
R Sikorski ◽  
S I Reed ◽  
B Vogelstein

Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.


1997 ◽  
Vol 186 (5) ◽  
pp. 695-704 ◽  
Author(s):  
Michel P.M. Vierboom ◽  
Hans W. Nijman ◽  
Rienk Offringa ◽  
Ellen I.H. van der Voort ◽  
Thorbald van Hall ◽  
...  

The tumor suppressor protein p53 is overexpressed in close to 50% of all human malignancies. The p53 protein is therefore an attractive target for immunotherapy. Cytotoxic T lymphocytes (CTLs) recognizing a murine wild-type p53 peptide, presented by the major histocompatibility complex class I molecule H-2Kb, were generated by immunizing p53 gene deficient (p53 −/−) C57BL/6 mice with syngeneic p53-overexpressing tumor cells. Adoptive transfer of these CTLs into tumor-bearing p53 +/+ nude mice caused complete and permanent tumor eradication. Importantly, this occurred in the absence of any demonstrable damage to normal tissue. When transferred into p53 +/+ immunocompetent C57BL/6 mice, the CTLs persisted for weeks in the absence of immunopathology and were capable of preventing tumor outgrowth. Wild-type p53-specific CTLs can apparently discriminate between p53-overexpressing tumor cells and normal tissue, indicating that widely expressed autologous molecules such as p53 can serve as a target for CTL-mediated immunotherapy of tumors.


1993 ◽  
Vol 13 (1) ◽  
pp. 301-306 ◽  
Author(s):  
C A Finlay

Expression of a p53-associated protein, Mdm-2 (murine double minute-2), can inhibit p53-mediated transactivation. In this study, overexpression of the Mdm-2 protein was found to result in the immortalization of primary rat embryo fibroblasts (REFs) and, in conjunction with an activated ras gene, in the transformation of REFs. The effect of wild-type p53 on the transforming properties of mdm-2 was determined by transfecting REFs with ras, mdm-2, and normal p53 genes. Transfection with ras plus mdm-2 plus wild-type p53 resulted in a 50% reduction in the number of transformed foci (relative to the level for ras plus mdm-2); however, more than half (9 of 17) of the cell lines derived from these foci expressed low levels of a murine p53 protein with the characteristics of a wild-type p53. These results are in contrast to previous studies which demonstrated that even minimal levels of wild-type p53 are not tolerated in cells transformed by ras plus myc, E1A, or mutant p53. The mdm-2 oncogene can overcome the previously demonstrated growth-suppressive properties of p53.


Blood ◽  
2018 ◽  
Vol 131 (25) ◽  
pp. 2789-2802 ◽  
Author(s):  
Alexander Jethwa ◽  
Mikołaj Słabicki ◽  
Jennifer Hüllein ◽  
Marius Jentzsch ◽  
Vineet Dalal ◽  
...  

Key Points The HAT complex member TRRAP is vital for maintaining high p53 levels by shielding it against the natural p53 degradation machinery. Acetylation-modifying complexes regulate p53 protein stability, which may provide a basis for therapeutic targeting of mutant p53.


Sign in / Sign up

Export Citation Format

Share Document