scholarly journals Isolation of theCAR1Gene fromSaccharomyces cerevisiaeand Analysis of Its Expression

1982 ◽  
Vol 2 (12) ◽  
pp. 1514-1523 ◽  
Author(s):  
Roberta A. Sumrada ◽  
Terrance G. Cooper

We isolated theCARIgene fromSaccharomyces cerevisiaeon a recombinant plasmid and localized it to a 1.58-kilobase DNA fragment. The cloned gene was used as a probe to analyze polyadenylated RNA derived from wild-type and mutant cells grown in the presence and absence of an inducer. Wild-type cells grown without the inducer contained very little polyadenylated RNA capable of hybridizing to the isolatedCAR1gene. A 1.25-kilobaseCAR1-specific RNA species was markedly increased, however, in wild-type cells grown in the presence of inducer and in constitutive, regulatory mutants grown without it. NoCAR1-specific RNA was observed when one class of constitutive mutant was grown in medium containing a good nitrogen source, such as asparagine. Two other mutants previously shown to be resistant to nitrogen repression contained large quantities ofCAR1RNA regardless of the nitrogen source in the medium. These data point to a qualitative correlation between the steady-state levels ofCAR1-specific, polyadenylated RNA and the degree of arginase induction and repression observed in the wild type and in strains believed to carry regulatory mutations. Therefore, they remain consistent with our earlier suggestion that arginase production is probably controlled at the level of gene expression.

1982 ◽  
Vol 2 (12) ◽  
pp. 1514-1523
Author(s):  
Roberta A. Sumrada ◽  
Terrance G. Cooper

We isolated the CARI gene from Saccharomyces cerevisiae on a recombinant plasmid and localized it to a 1.58-kilobase DNA fragment. The cloned gene was used as a probe to analyze polyadenylated RNA derived from wild-type and mutant cells grown in the presence and absence of an inducer. Wild-type cells grown without the inducer contained very little polyadenylated RNA capable of hybridizing to the isolated CAR1 gene. A 1.25-kilobase CAR1 -specific RNA species was markedly increased, however, in wild-type cells grown in the presence of inducer and in constitutive, regulatory mutants grown without it. No CAR1 -specific RNA was observed when one class of constitutive mutant was grown in medium containing a good nitrogen source, such as asparagine. Two other mutants previously shown to be resistant to nitrogen repression contained large quantities of CAR1 RNA regardless of the nitrogen source in the medium. These data point to a qualitative correlation between the steady-state levels of CAR1 -specific, polyadenylated RNA and the degree of arginase induction and repression observed in the wild type and in strains believed to carry regulatory mutations. Therefore, they remain consistent with our earlier suggestion that arginase production is probably controlled at the level of gene expression.


1982 ◽  
Vol 2 (8) ◽  
pp. 977-984
Author(s):  
M R Chevallier

The uracil permease gene of the yeast Saccharomyces cerevisiae was cloned on a hybrid plasmid which replicates autonomously in both yeast and Escherichia coli. Cloning was carried out by complementation in yeast. The smallest DNA fragment found to complement the uracil permease deficiency in recipient yeast cells measured approximately 2.3 kilobases. In strains transformed by the plasmid with the uracil permease gene inserted, initial rates of uracil uptake increased up to 25 times more than the rates found in the wild type. Using DNA probes carrying several regions of the cloned gene, I showed that a strain carrying the dhul-I mutation, which is not linked to the permease structural gene and is responsible for enhanced uptake velocity of uracil, had enhanced transcription of the permease gene. By using DNA probes recloned in phage M13 mp7, the direction of transcription of the permease gene relative to the restriction map was deduced. A half-life of 2 min was found for the permease mRNA in labeling kinetics experiments.


1982 ◽  
Vol 2 (8) ◽  
pp. 977-984 ◽  
Author(s):  
M R Chevallier

The uracil permease gene of the yeast Saccharomyces cerevisiae was cloned on a hybrid plasmid which replicates autonomously in both yeast and Escherichia coli. Cloning was carried out by complementation in yeast. The smallest DNA fragment found to complement the uracil permease deficiency in recipient yeast cells measured approximately 2.3 kilobases. In strains transformed by the plasmid with the uracil permease gene inserted, initial rates of uracil uptake increased up to 25 times more than the rates found in the wild type. Using DNA probes carrying several regions of the cloned gene, I showed that a strain carrying the dhul-I mutation, which is not linked to the permease structural gene and is responsible for enhanced uptake velocity of uracil, had enhanced transcription of the permease gene. By using DNA probes recloned in phage M13 mp7, the direction of transcription of the permease gene relative to the restriction map was deduced. A half-life of 2 min was found for the permease mRNA in labeling kinetics experiments.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.


2000 ◽  
Vol 203 (6) ◽  
pp. 1059-1070 ◽  
Author(s):  
U. Nagel ◽  
H. Machemer

Wild-type and the morphological mutant kin 241 of Paramecium tetraurelia showed improved orientation away from the centre of gravity (negative gravitaxis) when accelerations were increased from 1 to 7 g. Gravitaxis was more pronounced in the mutant. A correlation between the efficiency of orientation and the applied g value suggests a physical basis for gravitaxis. Transiently enhanced rates of reversal of the swimming direction coincided with transiently enhanced gravitaxis because reversals occurred more often in downward swimmers than in upward swimmers. The results provide evidence of a physiological modulation of gravitaxis by means of the randomizing effect of depolarization-dependent swimming reversals. Gravity bimodally altered propulsion rates of wild-type P. tetraurelia so that sedimentation was partly antagonized in upward and downward swimmers (negative gravikinesis). In the mutant, only increases in propulsion were observed, although the orientation-dependent sensitivity of the gravikinetic response was the same as in the wild-type population. Observed swimming speed and sedimentation rates in the wild-type and mutant cells were linearly related to acceleration, allowing the determination of gravikinesis as a linear (and so far non-saturating) function of gravity.


2005 ◽  
Vol 289 (4) ◽  
pp. F742-F748 ◽  
Author(s):  
Masaru Watanabe ◽  
Masato Konishi ◽  
Ichiro Ohkido ◽  
Senya Matsufuji

To study the regulatory mechanisms of intracellular Mg2+ concentration ([Mg2+]i) in renal tubular cells as well as in other cell types, we established a mutant strain of mouse renal cortical tubular cells that can grow in culture media with very high extracellular Mg2+ concentrations ([Mg2+]o > 100 mM: 101Mg-tolerant cells). [Mg2+]i was measured with a fluorescent indicator furaptra (mag-fura 2) in wild-type and 101Mg-tolerant cells. The average level of [Mg2+]i in the 101Mg-tolerant cells was kept lower than that in the wild-type cells either at 51 mM or 1 mM [Mg2+]o. When [Mg2+]o was lowered from 51 to 1 mM, the decrease in [Mg2+]i was significantly faster in the 101Mg-tolerant cells than in the wild-type cells. These differences between the 101Mg-tolerant cells and the wild-type cells were abolished in the absence of extracellular Na+ or in the presence of imipramine, a known inhibitor of Na+/Mg2+ exchange. We conclude that Na+-dependent Mg2+ transport activity is enhanced in the 101Mg-tolerant cells. The enhanced Mg2+ extrusion may prevent [Mg2+]i increase to higher levels and may be responsible for the Mg2+ tolerance.


2001 ◽  
Vol 183 (2) ◽  
pp. 528-535 ◽  
Author(s):  
Hsien-Ming Lee ◽  
Shiaw-Wei Tyan ◽  
Wei-Ming Leu ◽  
Ling-Yun Chen ◽  
David Chanhen Chen ◽  
...  

ABSTRACT The xps gene cluster is required for the second step of type II protein secretion in Xanthomonas campestrispv. campestris. Deletion of the entire gene cluster caused accumulation of secreted proteins in the periplasm. By analyzing protein abundance in the chromosomal mutant strains, we observed mutual dependence for normal steady-state levels between the XpsL and the XpsM proteins. The XpsL protein was undetectable in total lysate prepared from thexpsM mutant strain, and vice versa. Introduction of the wild-type xpsM gene carried on a plasmid into thexpsM mutant strain was sufficient for reappearance of the XpsL protein, and vice versa. Moreover, both XpsL and XpsM proteins were undetectable in the xpsN mutant strain. They were recovered either by reintroducing the wild-type xpsNgene or by introducing extra copies of wild-type xpsL orxpsM individually. Overproduction of wild-type XpsL and -M proteins simultaneously, but not separately, in the wild-type strain of X. campestris pv. campestris caused inhibition of secretion. Complementation of an xpsL orxpsM mutant strain with a plasmid-borne wild-type gene was inhibited by coexpression of XpsL and XpsM. The presence of the xpsN gene on the plasmid along with thexpsL and the xpsM genes caused more severe inhibition in both cases. Furthermore, complementation of thexpsN mutant strain was also inhibited. In both the wild-type strain and a strain with the xps gene cluster deleted (XC17433), carrying pCPP-LMN, which encodes all three proteins, each protein coprecipitated with the other two upon immunoprecipitation. Expression of pairwise combinations of the three proteins in XC17433 revealed that the XpsL-XpsM and XpsM-XpsN pairs still coprecipitated, whereas the XpsL-XpsN pair no longer coprecipitated.


1988 ◽  
Vol 106 (4) ◽  
pp. 1171-1183 ◽  
Author(s):  
T Hirano ◽  
Y Hiraoka ◽  
M Yanagida

A temperature-sensitive mutant nuc2-663 of the fission yeast Schizosaccharomyces pombe specifically blocks mitotic spindle elongation at restrictive temperature so that nuclei in arrested cells contain a short uniform spindle (approximately 3-micron long), which runs through a metaphase plate-like structure consisting of three condensed chromosomes. In the wild-type or in the mutant cells at permissive temperature, the spindle is fully extended approximately 15-micron long in anaphase. The nuc2' gene was cloned in a 2.4-kb genomic DNA fragment by transformation, and its complete nucleotide sequence was determined. Its coding region predicts a 665-residues internally repeating protein (76.250 mol wt). By immunoblots using anti-sera raised against lacZ-nuc2+ fused proteins, a polypeptide (designated p67; 67,000 mol wt) encoded by nuc2+ is detected in the wild-type S. pombe extracts; the amount of p67 is greatly increased when multi-copy or high-expression plasmids carrying the nuc2+ gene are introduced into the S. pombe cells. Cellular fractionation and Percoll gradient centrifugation combined with immunoblotting show that p67 cofractionates with nuclei and is enriched in resistant structure that is insoluble in 2 M NaCl, 25 mM lithium 3,5'-diiodosalicylate, and 1% Triton but is soluble in 8 M urea. In nuc2 mutant cells, however, soluble p76, perhaps an unprocessed precursor, accumulates in addition to insoluble p67. The role of nuc2+ gene may be to interconnect nuclear and cytoskeletal functions in chromosome separation.


1995 ◽  
Vol 108 (5) ◽  
pp. 2065-2076 ◽  
Author(s):  
V. Doring ◽  
F. Veretout ◽  
R. Albrecht ◽  
B. Muhlbauer ◽  
C. Schlatterer ◽  
...  

Dictyostelium discoideum cells harbor two annexin VII isoforms of 47 and 51 kDa which are present throughout development. In immunofluorescence and cell fractionation studies annexin VII was found in the cytoplasm and on the plasma membrane. In gene disruption mutants lacking both annexin VII isoforms growth, pinocytosis, phagocytosis, chemotaxis and motility were not significantly impaired under routine laboratory conditions, and the cells were able to complete the developmental cycle on bacterial plates. On non-nutrient agar plates development was delayed by three to four hours and a significant number of aggregates was no longer able to form fruiting bodies. Exocytosis as determined by measuring extracellular cAMP phosphodiesterase, alpha-fucosidase and alpha-mannosidase activity was unaltered, the total amounts of these enzymes were however lower in the mutant than in the wild type. The mutant cells were markedly impaired when they were exposed to low Ca2+ concentrations by adding EGTA to the nutrient medium. Under these conditions growth, motility and chemotaxis were severely affected. The Ca2+ concentrations were similar in mutant and wild-type cells both under normal and Ca2+ limiting conditions; however, the distribution was altered under low Ca2+ conditions in SYN-cells. The data suggest that annexin VII is not required for membrane fusion events but rather contributes to proper Ca2+ homeostasis in the cell.


Sign in / Sign up

Export Citation Format

Share Document