scholarly journals Developmental regulation of a sporulation-specific enzyme activity in Saccharomyces cerevisiae.

1982 ◽  
Vol 2 (2) ◽  
pp. 171-178 ◽  
Author(s):  
M J Clancy ◽  
L M Smith ◽  
P T Magee

An alpha-glucosidase activity (SAG) occurs in a/alpha Saccharomyces cerevisiae cells beginning at about 8 to 10 h after the initiation of sporulation. This enzyme is responsible for the rapid degradation of intracellular glycogen which follows the completion of meiosis in these cells. SAG differs from similar activities present in vegetative cells and appears to be a sporulation-specific enzyme. Cells arrested at various stages in sporulation (DNA replication, recombination, meiosis I, and meiosis II) were examined for SAG activity; the results show that SAG appearance depends on DNA synthesis and some recombination events but not on the meiotic divisions.

1982 ◽  
Vol 2 (2) ◽  
pp. 171-178
Author(s):  
M J Clancy ◽  
L M Smith ◽  
P T Magee

An alpha-glucosidase activity (SAG) occurs in a/alpha Saccharomyces cerevisiae cells beginning at about 8 to 10 h after the initiation of sporulation. This enzyme is responsible for the rapid degradation of intracellular glycogen which follows the completion of meiosis in these cells. SAG differs from similar activities present in vegetative cells and appears to be a sporulation-specific enzyme. Cells arrested at various stages in sporulation (DNA replication, recombination, meiosis I, and meiosis II) were examined for SAG activity; the results show that SAG appearance depends on DNA synthesis and some recombination events but not on the meiotic divisions.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 595-605 ◽  
Author(s):  
Bradley J Merrill ◽  
Connie Holm

Abstract To examine the role of the RAD52 recombinational repair pathway in compensating for DNA replication defects in Saccharomyces cerevisiae, we performed a genetic screen to identify mutants that require Rad52p for viability. We isolated 10 mec1 mutations that display synthetic lethality with rad52. These mutations (designated mec1-srf for synthetic lethality with rad-fifty-two) simultaneously cause two types of phenotypes: defects in the checkpoint function of Mec1p and defects in the essential function of Mec1p. Velocity sedimentation in alkaline sucrose gradients revealed that mec1-srf mutants accumulate small single-stranded DNA synthesis intermediates, suggesting that Mec1p is required for the normal progression of DNA synthesis. sml1 suppressor mutations suppress both the accumulation of DNA synthesis intermediates and the requirement for Rad52p in mec1-srf mutants, but they do not suppress the checkpoint defect in mec1-srf mutants. Thus, it appears to be the DNA replication defects in mec1-srf mutants that cause the requirement for Rad52p. By using hydroxyurea to introduce similar DNA replication defects, we found that single-stranded DNA breaks frequently lead to double-stranded DNA breaks that are not rapidly repaired in rad52 mutants. Taken together, these data suggest that the RAD52 recombinational repair pathway is required to prevent or repair double-stranded DNA breaks caused by defective DNA replication in mec1-srf mutants.


Genetics ◽  
1998 ◽  
Vol 148 (2) ◽  
pp. 581-598
Author(s):  
JoAnne Engebrecht ◽  
Sherie Masse ◽  
Luther Davis ◽  
Kristine Rose ◽  
Therese Kessel

Abstract A screen was designed to identify Saccharomyces cerevisiae mutants that were defective in meiosis yet proficient for meiotic ectopic recombination in the return-to-growth protocol. Seven mutants alleles were isolated; two are important for chromosome synapsis (RED1, MEK1) and five function independently of recombination (SPO14, GSG1, SPOT8/MUM2, 3, 4). Similar to the spoT8-1 mutant, mum2 deletion strains do not undergo premeiotic DNA synthesis, arrest prior to the first meiotic division and fail to sporulate. Surprisingly, although DNA replication does not occur, mum2 mutants are induced for high levels of ectopic recombination. gsg1 diploids are reduced in their ability to complete premeiotic DNA synthesis and the meiotic divisions, and a small percentage of cells produce spores. mum3 mutants sporulate poorly and the spores produced are inviable. Finally, mum4-1 mutants produce inviable spores. The meiotic/sporulation defects of gsg1, mum2, and mum3 are not relieved by spo11 or spo13 mutations, indicating that the mutant defects are not dependent on the initiation of recombination or completion of both meiotic divisions. In contrast, the spore inviability of the mum4-1 mutant is rescued by the spo13 mutation. The mum4-1 spo13 mutant undergoes a single, predominantly equational division, suggesting that MUM4 functions at or prior to the first meiotic division. Although recombination is variably affected in the gsg1 and mum mutants, we hypothesize that these mutants define genes important for aspects of meiosis not directly related to recombination.


2019 ◽  
Author(s):  
Ján Labuda ◽  
Richard P. Bowater ◽  
Miroslav Fojta ◽  
Günter Gauglitz ◽  
Zdeněk Glatz ◽  
...  

1972 ◽  
Vol 130 (1) ◽  
pp. 55-62 ◽  
Author(s):  
J. Melling ◽  
G. K. Scott

Purified penicillinase, in gram quantities, has been prepared from Escherichia coli strain W3310 by using methods developed to handle large amounts of material. The final product had a specific enzyme activity of 3.08 units/μg of protein, which was over twice as high as that reported previously (Datta & Richmond, 1966). The purified enzyme was similar to that from E. coli strain TEM, but different in molecular weight and some other respects. The differences observed may be a result of the greater purity obtained.


Cell ◽  
1975 ◽  
Vol 6 (1) ◽  
pp. 21-27 ◽  
Author(s):  
D.L. Nuss ◽  
Y. Furuichi ◽  
G. Koch ◽  
A.J. Shatkin

Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1758-1771 ◽  
Author(s):  
A. de Morgan ◽  
L. Brodsky ◽  
Y. Ronin ◽  
E. Nevo ◽  
A. Korol ◽  
...  

Exponential-phase yeast cells readily enter stationary phase when transferred to fresh, carbon-deficient medium, and can remain fully viable for up to several months. It is known that stationary-phase prokaryotic cells may still synthesize substantial amounts of DNA. Although the basis of this phenomenon remains unclear, this DNA synthesis may be the result of DNA maintenance and repair, recombination, and stress-induced transposition of mobile elements, which may occur in the absence of DNA replication. To the best of our knowledge, the existence of DNA turnover in stationary-phase unicellular eukaryotes remains largely unstudied. By performing cDNA-spotted (i.e. ORF) microarray analysis of stationary cultures of a haploid Saccharomyces cerevisiae strain, we demonstrated on a genomic scale the localization of a DNA-turnover marker [5-bromo-2′-deoxyuridine (BrdU); an analogue of thymidine], indicative of DNA synthesis in discrete, multiple sites across the genome. Exponential-phase cells on the other hand, exhibited a uniform, total genomic DNA synthesis pattern, possibly the result of DNA replication. Interestingly, BrdU-labelled sites exhibited a significant overlap with highly expressed features. We also found that the distribution among chromosomes of BrdU-labelled and expressed features deviates from random distribution; this was also observed for the overlapping set. Ty1 retrotransposon genes were also found to be labelled with BrdU, evidence for transposition during stationary phase; however, they were not significantly expressed. We discuss the relevance and possible connection of these results to DNA repair, mutation and related phenomena in higher eukaryotes.


1969 ◽  
Vol 47 (4) ◽  
pp. 467-475 ◽  
Author(s):  
P. D. Shargool ◽  
E. A. Cossins

The synthesis and metabolism of arginine in germinating peas was examined by supplying micromolar quantities of L-citruiline-carbamyl-14C, DL-arginine-carbamyl-14C, and DL-arginine-5-14C to imbibing seeds. Citrulline was readily incorporated into arginine, but the labelled arginine solutions were not extensively metabolized.Extracts of 1-day-old cotyledons were found to catalyze the synthesis of arginine from citrulline in a reaction having absolute requirements for ATP, L-aspartate, and magnesium ions. The extracts were fractionated by (NH4)2SO4 precipitation followed by gel filtration on columns of Sephadex G-50 and G-200. These treatments increased the specific enzyme activity by approximately 36 times. After such treatments the preparations still contained appreciable amounts of argininosuccinate lyase (L-argininosuccinate arginine-lyase, EC 4.3.2.1) activity. The rate of arginine synthesis was altered by increasing the concentrations of L-citrulline, L-aspartate, and ATP. The latter compounds were found to be inhibitory at concentrations of 1 μmole/ml and 4 μmoles/ml, respectively. Arginine synthesis was markedly affected by pH and by additions of arginine and argininosuccinate. It is concluded that germinating pea cotyledons contain appreciable levels of argirrinosuccmate synthetase (L-citrulline:L-aspartate ligase (AMP), EC 6.3.4.5), and furthermore, that this enzyme has importance in arginine biosynthesis during germination.


Sign in / Sign up

Export Citation Format

Share Document