scholarly journals Ras-Guanine Nucleotide Exchange Factor Sos2 Is Dispensable for Mouse Growth and Development

2000 ◽  
Vol 20 (17) ◽  
pp. 6410-6413 ◽  
Author(s):  
Luis M. Esteban ◽  
Alberto Fernández-Medarde ◽  
Eva López ◽  
Kate Yienger ◽  
Carmen Guerrero ◽  
...  

ABSTRACT The mammalian sos1 and sos2 genes encode highly homologous members of the Son-of-sevenless family of guanine nucleotide exchange factors. They are ubiquitously expressed and play key roles in transmission of signals initiated by surface protein tyrosine kinases that are transduced into the cell through the action of membrane-associated Ras proteins. Recent reports showed that targeted disruption of the sos1 locus results in embryonic lethality. To gain insight into the in vivo function ofsos2, we disrupted its catalytic CDC25-H domain by means of gene targeting techniques. Mating among heterozygous sos2+/− mice produced viablesos2 −/− offspring with a normal Mendelian pattern of inheritance, indicating that the loss of sos2does not interfere with embryo viability in the uterus. Adult homozygous mutant sos2−/− mice reached sexual maturity at the same age as their wild-type littermates, and both male and female null mutants were fertile. Histopathological analysis showed no observable differences between mutant and wild-type mice. Our results show that unlike the case for sos1,sos2 gene function is dispensable for normal mouse development, growth, and fertility.

1994 ◽  
Vol 14 (7) ◽  
pp. 4546-4553
Author(s):  
K V Ramaiah ◽  
M V Davies ◽  
J J Chen ◽  
R J Kaufman

The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.


1994 ◽  
Vol 14 (7) ◽  
pp. 4546-4553 ◽  
Author(s):  
K V Ramaiah ◽  
M V Davies ◽  
J J Chen ◽  
R J Kaufman

The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.


2006 ◽  
Vol 26 (13) ◽  
pp. 4830-4842 ◽  
Author(s):  
Sonja G. Hunter ◽  
Guanglei Zhuang ◽  
Dana Brantley-Sieders ◽  
Wojciech Swat ◽  
Christopher W. Cowan ◽  
...  

ABSTRACT Angiogenesis, the process by which new blood vessels are formed from preexisting vasculature, is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Prior studies from our laboratory demonstrate that the EphA2 receptor tyrosine kinase is a key regulator of angiogenesis in vivo. The EphA receptor-mediated angiogenic response is dependent on activation of Rho family GTPase Rac1 and is regulated by phosphatidylinositol 3-kinase. Here we report the identification of Vav2 and Vav3 as guanine nucleotide exchange factors (GEFs) that link the EphA2 receptor to Rho family GTPase activation and angiogenesis. Ephrin-A1 stimulation recruits the binding of Vav proteins to the activated EphA2 receptor. The induced association of EphA receptor and Vav proteins modulates the activity of Vav GEFs, leading to activation of Rac1 GTPase. Overexpression of either Vav2 or Vav3 in primary microvascular endothelial cells promotes Rac1 activation, cell migration, and assembly in response to ephrin-A1 stimulation. Conversely, loss of Vav2 and Vav3 GEFs inhibits Rac1 activation and ephrin-A1-induced angiogenic responses both in vitro and in vivo. In addition, embryonic fibroblasts derived from Vav2−/− Vav3−/− mice fail to spread on an ephrin-A1-coated surface and exhibit a significant decrease in the formation of ephrin-A1-induced lamellipodia and filopodia. These findings suggest that Vav GEFs serve as a molecular link between EphA2 receptors and the actin cytoskeleton and provide an important mechanism for EphA2-mediated angiogenesis.


2002 ◽  
Vol 22 (8) ◽  
pp. 2498-2504 ◽  
Author(s):  
Alberto Fernández-Medarde ◽  
Luis M. Esteban ◽  
Alejandro Núñez ◽  
Ángel Porteros ◽  
Lino Tessarollo ◽  
...  

ABSTRACT The mammalian Grf1 and Grf2 proteins are Ras guanine nucleotide exchange factors (GEFs) sharing a high degree of structural homology, as well as an elevated expression level in central nervous system tissues. Such similarities raise questions concerning the specificity and/or redundancy at the functional level between the two Grf proteins. grf1-null mutant mice have been recently described which showed phenotypic growth reduction and long-term memory loss. To gain insight into the in vivo function of Grf2, we disrupted its catalytic CDC25-H domain by means of gene targeting. Breeding among grf2 +/− animals gave rise to viable grf2 −/− adult animals with a normal Mendelian pattern, suggesting that Grf2 is not essential for embryonic and adult mouse development. In contrast to Grf1-null mice, analysis of grf2 −/− litters showed similar size and weight as their heterozygous or wild-type grf2 counterparts. Furthermore, adult grf2 −/− animals reached sexual maturity at the same age as their wild-type littermates and showed similar fertility levels. No specific pathology was observed in adult Grf2-null animals, and histopathological studies showed no observable differences between null mutant and wild-type Grf2 mice. These results indicate that grf2 is dispensable for mouse growth, development, and fertility. Furthermore, analysis of double grf1/grf2 null animals did not show any observable phenotypic difference with single grf1 −/− animals, further indicating a lack of functional overlapping between the two otherwise highly homologous Grf1 and Grf2 proteins.


2003 ◽  
Vol 160 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Metello Innocenti ◽  
Emanuela Frittoli ◽  
Isabella Ponzanelli ◽  
John R. Falck ◽  
Saskia M. Brachmann ◽  
...  

Class I phosphoinositide 3-kinases (PI3Ks) are implicated in many cellular responses controlled by receptor tyrosine kinases (RTKs), including actin cytoskeletal remodeling. Within this pathway, Rac is a key downstream target/effector of PI3K. However, how the signal is routed from PI3K to Rac is unclear. One possible candidate for this function is the Rac-activating complex Eps8–Abi1–Sos-1, which possesses Rac-specific guanine nucleotide exchange factor (GEF) activity. Here, we show that Abi1 (also known as E3b1) recruits PI3K, via p85, into a multimolecular signaling complex that includes Eps8 and Sos-1. The recruitment of p85 to the Eps8–Abi1–Sos-1 complex and phosphatidylinositol 3, 4, 5 phosphate (PIP3), the catalytic product of PI3K, concur to unmask its Rac-GEF activity in vitro. Moreover, they are indispensable for the activation of Rac and Rac-dependent actin remodeling in vivo. On growth factor stimulation, endogenous p85 and Abi1 consistently colocalize into membrane ruffles, and cells lacking p85 fail to support Abi1-dependent Rac activation. Our results define a mechanism whereby propagation of signals, originating from RTKs or Ras and leading to actin reorganization, is controlled by direct physical interaction between PI3K and a Rac-specific GEF complex.


2020 ◽  
Author(s):  
Andrew P. Porter ◽  
Gavin R. M. White ◽  
Erinn-Lee Ogg ◽  
Helen J. Whalley ◽  
Angeliki Malliri

SummaryCentriole duplication is tightly controlled to maintain correct centriole number through the cell cycle. A key component of this control is the regulated degradation of PLK4, the master regulator of centriole duplication. Here we show that the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 localises to centrosomes during S-phase, where it is required for maintenance of normal centriole number. Depletion of Tiam1 leads to an increase in centrosomal PLK4, centriole overduplication and ultimately to lagging chromosomes at anaphase and aneuploidy. The effects of Tiam1 depletion can be rescued by re-expression of wild-type Tiam1 and catalytically inactive (GEF*) Tiam1, but not by Tiam1 mutants unable to bind to the F-box protein βTRCP, implying that Tiam1 regulates PLK4 levels through promoting βTRCP-mediated degradation.


1994 ◽  
Vol 14 (2) ◽  
pp. 1104-1112
Author(s):  
R D Mosteller ◽  
J Han ◽  
D Broek

Ras proteins are activated in vivo by guanine nucleotide exchange factors encoded by genes homologous to the CDC25 gene of Saccharomyces cerevisiae. We have taken a combined genetic and biochemical approach to probe the sites on Ras proteins important for interaction with such exchange factors and to further probe the mechanism of CDC25-catalyzed GDP-GTP exchange. Random mutagenesis coupled with genetic selection in S. cerevisiae was used to generate second-site mutations within human H-ras-ala15 which could suppress the ability of the Ala-15 substitution to block CDC25 function. We transferred these second-site suppressor mutations to normal H-ras and oncogenic H-rasVal-12 to test whether they induced a general loss of function or whether they selectively affected CDC25 interaction. Four highly selective mutations were discovered, and they affected the surface-located amino acid residues 62, 63, 67, and 69. Two lines of evidence suggested that these residues may be involved in binding to CDC25: (i) using the yeast two-hybrid system, we demonstrated that these mutants cannot bind CDC25 under conditions where the wild-type H-Ras protein can; (ii) we demonstrated that the binding to H-Ras of monoclonal antibody Y13-259, whose epitope has been mapped to residues 63, 65, 66, 67, 70, and 73, is blocked by the mouse sos1 and yeast CDC25 gene products. We also present evidence that the mechanism by which CDC25 catalyzes exchange is more involved than simply catalyzing the release of bound nucleotide and passively allowing nucleotides to rebind. Most critically, a complex of Ras and CDC25 protein, unlike free Fas protein, possesses significantly greater affinity for GTP than for GDP. Furthermore, the Ras CDC25 complex is more readily dissociated into free subunits by GTP than it is by GDP. Both of these results suggest a function for CDC25 in promoting the selective exchange of GTP for GDP.


2006 ◽  
Vol 26 (23) ◽  
pp. 8964-8975 ◽  
Author(s):  
Elena V. Kostenko ◽  
Oyenike O. Olabisi ◽  
Sutapa Sahay ◽  
Pedro L. Rodriguez ◽  
Ian P. Whitehead

ABSTRACT Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) with in vitro exchange activity specific for RhoA and Cdc42. Like many RhoGEF family members, the in vivo exchange activity of Dbs is restricted in a cell-specific manner. Here we report the characterization of a novel scaffold protein (designated cell cycle progression protein 1 [Ccpg1]) that interacts with Dbs and modulates its in vivo exchange specificity. When coexpressed in mammalian cells, Ccpg1 binds to the Dbl homology/pleckstrin homology domain tandem motif of Dbs and inhibits its exchange activity toward RhoA, but not Cdc42. Expression of Ccpg1 correlates with the ability of Dbs to activate endogenous RhoA in cultured cells, and suppression of endogenous Ccpg1 expression potentiates Dbs exchange activity toward RhoA. The isolated Dbs binding domain of Ccpg1 is not sufficient to suppress Dbs exchange activity on RhoA, thus suggesting a regulatory interaction. Ccpg1 mediates recruitment of endogenous Src kinase into Dbs-containing complexes and interacts with the Rho family member Cdc42. Collectively, our studies suggest that Ccpg1 represents a new class of regulatory scaffold protein that can function as both an assembly platform for Rho protein signaling complexes and a regulatory protein which can restrict the substrate utilization of a promiscuous RhoGEF family member.


Sign in / Sign up

Export Citation Format

Share Document