scholarly journals A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression

2000 ◽  
Vol 20 (17) ◽  
pp. 6600-6611 ◽  
Author(s):  
Ulrike Delling ◽  
Jolana Tureckova ◽  
Hae W. Lim ◽  
Leon J. De Windt ◽  
Peter Rotwein ◽  
...  

ABSTRACT The differentiation and maturation of skeletal muscle cells into functional fibers is coordinated largely by inductive signals which act through discrete intracellular signal transduction pathways. Recently, the calcium-activated phosphatase calcineurin (PP2B) and the family of transcription factors known as NFAT have been implicated in the regulation of myocyte hypertrophy and fiber type specificity. Here we present an analysis of the intracellular mechanisms which underlie myocyte differentiation and fiber type specificity due to an insulinlike growth factor 1 (IGF-1)–calcineurin–NFAT signal transduction pathway. We demonstrate that calcineurin enzymatic activity is transiently increased during the initiation of myogenic differentiation in cultured C2C12 cells and that this increase is associated with NFATc3 nuclear translocation. Adenovirus-mediated gene transfer of an activated calcineurin protein (AdCnA) potentiates C2C12 and Sol8 myocyte differentiation, while adenovirus-mediated gene transfer of noncompetitive calcineurin-inhibitory peptides (cain or ΔAKAP79) attenuates differentiation. AdCnA infection was also sufficient to rescue myocyte differentiation in an IGF-depleted myoblast cell line. Using 10T1/2 cells, we demonstrate that MyoD-directed myogenesis is dramatically enhanced by either calcineurin or NFATc3 cotransfection, while a calcineurin inhibitory peptide (cain) blocks differentiation. Enhanced myogenic differentiation directed by calcineurin, but not NFATc3, preferentially specifies slow myosin heavy-chain expression, while enhanced differentiation through mitogen-activated protein kinase kinase 6 (MKK6) promotes fast myosin heavy-chain expression. These data indicate that a signaling pathway involving IGF-calcineurin-NFATc3 enhances myogenic differentiation whereas calcineurin acts through other factors to promote the slow fiber type program.

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2232
Author(s):  
Valentina Pallottini ◽  
Mayra Colardo ◽  
Claudia Tonini ◽  
Noemi Martella ◽  
Georgios Strimpakos ◽  
...  

Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.


2000 ◽  
Vol 20 (17) ◽  
pp. 6600-6611 ◽  
Author(s):  
Ulrike Delling ◽  
Jolana Tureckova ◽  
Hae W. Lim ◽  
Leon J. De Windt ◽  
Peter Rotwein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document