scholarly journals ATF6 Activated by Proteolysis Binds in the Presence of NF-Y (CBF) Directly to the cis-Acting Element Responsible for the Mammalian Unfolded Protein Response

2000 ◽  
Vol 20 (18) ◽  
pp. 6755-6767 ◽  
Author(s):  
Hiderou Yoshida ◽  
Tetsuya Okada ◽  
Kyosuke Haze ◽  
Hideki Yanagi ◽  
Takashi Yura ◽  
...  

ABSTRACT Transcription of genes encoding molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) is induced by accumulation of unfolded proteins in the ER. This intracellular signaling, known as the unfolded protein response (UPR), is mediated by thecis-acting ER stress response element (ERSE) in mammals. In addition to ER chaperones, the mammalian transcription factor CHOP (also called GADD153) is induced by ER stress. We report here that the transcription factor XBP-1 (also called TREB5) is also induced by ER stress and that induction of CHOP and XBP-1 is mediated by ERSE. The ERSE consensus sequence is CCAAT-N9-CCACG. As the general transcription factor NF-Y (also known as CBF) binds to CCAAT, CCACG is considered to provide specificity in the mammalian UPR. We recently found that the basic leucine zipper protein ATF6 isolated as a CCACG-binding protein is synthesized as a transmembrane protein in the ER, and ER stress-induced proteolysis produces a soluble form of ATF6 that translocates into the nucleus. We report here that overexpression of soluble ATF6 activates transcription of the CHOP and XBP-1 genes as well as of ER chaperone genes constitutively, whereas overexpression of a dominant negative mutant of ATF6 blocks the induction by ER stress. Furthermore, we demonstrated that soluble ATF6 binds directly to CCACG only when CCAAT exactly 9 bp upstream of CCACG is bound to NF-Y. Based on these and other findings, we concluded that specific and direct interactions between ATF6 and ERSE are critical for transcriptional induction not only of ER chaperones but also of CHOP and XBP-1.

1997 ◽  
Vol 8 (10) ◽  
pp. 1845-1862 ◽  
Author(s):  
Tetsushi Kawahara ◽  
Hideki Yanagi ◽  
Takashi Yura ◽  
Kazutoshi Mori

An intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, called the unfolded protein response (UPR), is activated when unfolded proteins are accumulated in the ER under a variety of stress conditions (“ER stress”). We and others recently identified Hac1p/Ern4p as a transcription factor responsible for the UPR inSaccharomyces cerevisiae. It was further reported that Hac1p (238 aa) is detected only in ER-stressed cells, and its expression is mediated by unconventional splicing ofHAC1 precursor mRNA. The splicing replaces the C-terminal portion of Hac1p; it was proposed that precursor mRNA is also translated but the putative product of 230 aa is rapidly degraded by the ubiquitin–proteasome pathway. We have identified and characterized the same regulated splicing and confirmed its essential features. Contrary to the above proposal, however, we find that the 238-aa product of mature mRNA and the 230-aa-type protein tested are highly unstable with little or no difference in stability. Furthermore, we demonstrate that the absence of Hac1p in unstressed cells is due to the lack of translation of precursor mRNA. We conclude that Hac1p is synthesized as the result of ER stress-induced mRNA splicing, leading to activation of the UPR.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ciara M Gallagher ◽  
Carolina Garri ◽  
Erica L Cain ◽  
Kenny Kean-Hooi Ang ◽  
Christopher G Wilson ◽  
...  

The membrane-bound transcription factor ATF6α plays a cytoprotective role in the unfolded protein response (UPR), required for cells to survive ER stress. Activation of ATF6α promotes cell survival in cancer models. We used cell-based screens to discover and develop Ceapins, a class of pyrazole amides, that block ATF6α signaling in response to ER stress. Ceapins sensitize cells to ER stress without impacting viability of unstressed cells. Ceapins are highly specific inhibitors of ATF6α signaling, not affecting signaling through the other branches of the UPR, or proteolytic processing of its close homolog ATF6β or SREBP (a cholesterol-regulated transcription factor), both activated by the same proteases. Ceapins are first-in-class inhibitors that can be used to explore both the mechanism of activation of ATF6α and its role in pathological settings. The discovery of Ceapins now enables pharmacological modulation all three UPR branches either singly or in combination.


2016 ◽  
Vol 37 (3) ◽  
pp. 1069-1079 ◽  
Author(s):  
Zhui Yu ◽  
Huaxin Sheng ◽  
Shuai Liu ◽  
Shengli Zhao ◽  
Christopher C Glembotski ◽  
...  

Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To determine the extent to which activation of the ATF6 UPR branch defines the fate and function of neurons after stroke, we generated a conditional and tamoxifen-inducible sATF6 knock-in mouse. To express sATF6 in forebrain neurons, we crossed our sATF6 knock-in mouse line with Emx1-Cre mice to generate ATF6-KI mice. After the ATF6 branch was activated in ATF6-KI mice with tamoxifen, mice were subjected to transient middle cerebral artery occlusion. Forced activation of the ATF6 UPR branch reduced infarct volume and improved functional outcome at 24 h after stroke. Increased autophagic activity at early reperfusion time after stroke may contribute to the ATF6-mediated neuroprotection. We concluded that the ATF6 UPR branch is crucial to ischemic stroke outcome. Therefore, boosting UPR pro-survival pathways may be a promising therapeutic strategy for stroke.


2016 ◽  
Vol 27 (9) ◽  
pp. 1536-1551 ◽  
Author(s):  
Michael E. Fusakio ◽  
Jeffrey A. Willy ◽  
Yongping Wang ◽  
Emily T. Mirek ◽  
Rana J. T. Al Baghdadi ◽  
...  

Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins—PERK (PEK/EIF2AK3), IRE1, and ATF6—is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.


2010 ◽  
Vol 84 (17) ◽  
pp. 8446-8459 ◽  
Author(s):  
Huifang M. Zhang ◽  
Xin Ye ◽  
Yue Su ◽  
Ji Yuan ◽  
Zhen Liu ◽  
...  

ABSTRACT Cardiomyocyte apoptosis is a hallmark of coxsackievirus B3 (CVB3)-induced myocarditis. We used cardiomyocytes and HeLa cells to explore the cellular response to CVB3 infection, with a focus on pathways leading to apoptosis. CVB3 infection triggered endoplasmic reticulum (ER) stress and differentially regulated the three arms of the unfolded protein response (UPR) initiated by the proximal ER stress sensors ATF6a (activating transcription factor 6a), IRE1-XBP1 (X box binding protein 1), and PERK (PKR-like ER protein kinase). Upon CVB3 infection, glucose-regulated protein 78 expression was upregulated, and in turn ATF6a and XBP1 were activated via protein cleavage and mRNA splicing, respectively. UPR activity was further confirmed by the enhanced expression of UPR target genes ERdj4 and EDEM1. Surprisingly, another UPR-associated gene, p58IPK, which often is upregulated during infections with other types of viruses, was downregulated at both mRNA and protein levels after CVB3 infection. These findings were observed similarly for uninfected Tet-On HeLa cells induced to overexpress ATF6a or XBP1. In exploring potential connections between the three UPR pathways, we found that the ATF6a-induced downregulation of p58IPK was associated with the activation of PKR (PERK) and the phosphorylation of eIF2α, suggesting that p58IPK, a negative regulator of PERK and PKR, mediates cross-talk between the ATF6a/IRE1-XBP1 and PERK arms. Finally, we found that CVB3 infection eventually produced the induction of the proapoptoic transcription factor CHOP and the activation of SREBP1 and caspase-12. Taken together, these data suggest that CVB3 infection activates UPR pathways and induces ER stress-mediated apoptosis through the suppression of P58IPK and induction/activation of CHOP, SREBP1, and caspase-12.


2021 ◽  
Author(s):  
Jinghuan Wang ◽  
zhenghua Su ◽  
wen Zhong ◽  
haibi Su ◽  
Jie Xu ◽  
...  

Abstract Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis leading to impairment of endoplasmic reticulum (ER) function and activating the unfolded protein response (UPR). PARP16 is the only an active ADP-ribosyl transferase known tail-anchored ER transmembrane protein with a cytosolic catalytic domain. Here, we find PARP16 is highly expressed in ischemic cerebral hemisphere and Oxygen-glucose deprivation (OGD)-treated immortalized hippocampal neuroblasts HT22 cells. Using adeno-associated virus-mediated knockdown PARP16 mice, we find knockdown PARP16 decreases infarct demarcations and has a better neurological outcome after ischemic stroke. Our data indicate PARP16 overexpression promotes ER stress-mediated cell damage in primary cortical neurons, in turn, knockdown PARP16 decreases ER stress and neuronal death caused by OGD. Furthermore, PARP16 functions mechanistically as ADP-ribosyltransferase to modulate the level of ribosylation of the corresponding PERK and IRE1α arm of the UPR, and that such modification is required for activation of PERK and IRE1α. Indeed, pharmacological stimulation of the UPR using Brefeldin A counteracts knockdown of PARP16-mediated neuronal protection in OGD. On other hand, when an ER inhibitor Tauroursodeoxycholic acid present, permit more obvious protection and inactivation of PERK and IRF1α caused by knockdown of PARP16. In conclusion, PARP16 plays a crucial role in post-ischemic UPR and the knockdown of PARP16 alleviates brain injury after ischemic stroke. The rationale of this study is to explore the potentials of the PARP16-PERK/IRE1α axis as a target for neuronal survival in ischemic stroke.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 116
Author(s):  
Benjamin P. Johnston ◽  
Eric S. Pringle ◽  
Craig McCormick

Herpesviruses usurp host cell protein synthesis machinery to convert viral mRNAs into proteins, and the endoplasmic reticulum (ER) to ensure the proper folding, post-translational modification and trafficking of secreted and transmembrane viral proteins. Overloading the ER folding capacity activates the unfolded protein response (UPR), whereby sensor proteins, ATF6, PERK and IRE1, initiate a stress-mitigating transcription program that accelerates the catabolism of misfolded proteins, while increasing the ER folding capacity. Kaposi’s sarcoma-associated herpesvirus (KSHV) can be reactivated from latency through the chemical induction of ER stress, which causes an accumulation of the XBP1s transcription factor that transactivates the viral RTA lytic switch gene. The presence of XBP1s-responsive elements in the RTA promoter suggests that KSHV evolved a mechanism to respond to ER stress. Here, we report that ATF6, PERK and IRE1 were activated upon reactivation from latency and were required for efficient KSHV lytic replication. The genetic or pharmacologic inhibitions of each UPR sensor reduced virion production. Despite UPR sensor activation during KSHV lytic replication, downstream UPR transcriptional responses were restricted: (1) ATF6 was cleaved to activate the ATF6(N) transcription factor but ATF6(N)-responsive genes were not transcribed; (2) PERK phosphorylated eIF2, but ATF4 did not accumulate; (3) IRE1 caused XBP1–mRNA splicing, but the XBP1s protein did not accumulate and the XBP1s-responsive genes were not transcribed. The complementation of XBP1s deficiency during KSHV lytic replication inhibited virion production in a dose-dependent manner in epithelial cells. Taken together, these findings indicate that, while XBP1s plays an important role in reactivation from latency, it can inhibit virus replication at a later step, which the virus overcomes by preventing its synthesis. These findings suggest that KSHV hijacks UPR sensors to promote efficient viral replication while sustaining ER stress.


2018 ◽  
Author(s):  
Benjamin P. Johnston ◽  
Craig McCormick

AbstractHerpesviruses usurp host cell protein synthesis machinery to convert viral mRNAs into proteins, and the endoplasmic reticulum (ER) to ensure proper folding, post-translational modification and trafficking of secreted viral proteins. Overloading ER folding capacity activates the unfolded protein response (UPR), whereby displacement of the ER chaperone BiP activates UPR sensor proteins ATF6, PERK and IRE1 to initiate transcriptional responses to increase catabolic processes and ER folding capacity, while suppressing bulk protein synthesis. Kaposi’s sarcoma-associated herpesvirus (KSHV) can be reactivated from latency by chemical induction of ER stress, whereby the IRE1 endoribonuclease cleaves XBP1 mRNA, resulting in a ribosomal frameshift that yields the XBP1s transcription factor that transactivates the promoter of K-RTA, the viral lytic switch protein. By incorporating XBP1s responsive elements in the K-RTA promoter KSHV appears to have evolved a mechanism to respond to ER stress. Here, we report that following reactivation from latency, KSHV lytic replication causes activation of ATF6, PERK and IRE1 UPR sensor proteins. UPR sensor activation is required for efficient KSHV lytic replication; genetic or pharmacologic inhibition of each UPR sensor diminishes virion production. Despite strong UPR sensor activation during KSHV lytic replication, downstream UPR transcriptional responses were restricted; 1) ATF6 was cleaved to release the ATF6(N) transcription factor but known ATF6(N)-responsive genes were not transcribed; 2) PERK phosphorylated eIF2α but ATF4 did not accumulate as expected; 3) IRE1 caused XBP1 mRNA splicing, but XBP1s protein failed to accumulate and XBP1s-responsive genes were not transcribed. Remarkably, complementation of XBP1s deficiency during KSHV lytic replication by ectopic expression inhibited the production of infectious virions in a dose-dependent manner. Therefore, while XBP1s plays an important role in reactivation from latency, it inhibits later steps in lytic replication, which the virus overcomes by preventing its synthesis. Taken together, these findings suggest that KSHV hijacks UPR sensors to promote efficient viral replication while sustaining ER stress.Author summaryHuman herpesvirus-8 is the most recently discovered human herpesvirus, and it is the infectious cause of Kaposi’s sarcoma, which is why it’s also known as Kaposi’s sarcoma-associated herpesvirus (KSHV). Like all herpesviruses, KSHV replicates in the cell nucleus and uses host cell machinery to convert viral genes into proteins. Some of these proteins are synthesized, folded and modified in the endoplasmic reticulum (ER) and traverse the cellular secretory apparatus. Because the virus heavily utilizes the ER to make and process proteins, there is potential to overwhelm the system, which could impede viral replication and in extreme cases, kill the cell. Normally, when demands on the protein folding machinery are exceeded then misfolded proteins accumulate and activate the unfolded protein response (UPR). The UPR resolves ER stress by putting the brakes on synthesis of many proteins, while signaling to the nucleus to turn on a program that aims to correct this imbalance. Previous work has shown that KSHV is ‘wired’ to sense ER stress, which it uses to reactivate from a largely inactive state known as latency, in order to make more viruses. Specifically, a UPR sensor protein called IRE1 senses the accumulation of unfolded proteins in the ER and rededicates a gene called XBP1 to the production of a transcription factor called XBP1s through an unconventional cytoplasmic mRNA splicing event. XBP1s travels to the cell nucleus and stimulates the production of a collection of proteins that mitigate ER stress. In latently infected cells, XBP1s also binds to the KSHV genome and causes the production of K-RTA, a viral transcription factor that initiates the switch from latency to productive lytic replication. This achieves stress-induced initiation of KSHV replication, but nothing is known about how ER stress and the UPR affect progress through the KSHV replication cycle. Here we show that as KSHV replication progresses, all three known UPR sensor proteins, IRE1, ATF6 and PERK, are activated, which is required for efficient viral replication. Normally, activation of each of these three sensor proteins communicates a unique signal to the cell nucleus to stimulate the production of ER stress mitigating proteins, but in KSHV lytic replication all downstream communication is stymied. The failure to resolve ER stress would normally be expected to put the virus at a disadvantage, but we demonstrate that reversal of this scenario is worse; when we add extra XBP1s to the system to artificially stimulate the production of UPR responsive genes, virus replication is blocked at a late stage and no progeny viruses are released from infected cells. Taken together, these observations suggest that KSHV requires UPR sensor protein activation to replicate but has dramatically altered the outcome to prevent the synthesis of new UPR proteins and sustain stress in the ER compartment.


2021 ◽  
Vol 22 (20) ◽  
pp. 11049
Author(s):  
Lucie Crouzier ◽  
Morgane Denus ◽  
Elodie M. Richard ◽  
Amarande Tavernier ◽  
Camille Diez ◽  
...  

The sigma-1 receptor (S1R) is a highly conserved transmembrane protein highly enriched in mitochondria-associated endoplasmic reticulum (ER) membranes, where it interacts with several partners involved in ER-mitochondria Ca2+ transfer, activation of the ER stress pathways, and mitochondria function. We characterized a new S1R deficient zebrafish line and analyzed the impact of S1R deficiency on visual, auditory and locomotor functions. The s1r+25/+25 mutant line showed impairments in visual and locomotor functions compared to s1rWT. The locomotion of the s1r+25/+25 larvae, at 5 days post fertilization, was increased in the light and dark phases of the visual motor response. No deficit was observed in acoustic startle response. A critical role of S1R was shown in ER stress pathways and mitochondrial activity. Using qPCR to analyze the unfolded protein response genes, we observed that loss of S1R led to decreased levels of IRE1 and PERK-related effectors and increased over-expression of most of the effectors after a tunicamycin challenge. Finally, S1R deficiency led to alterations in mitochondria bioenergetics with decreased in basal, ATP-linked and non-mitochondrial respiration and following tunicamycin challenge. In conclusion, this new zebrafish model confirmed the importance of S1R activity on ER-mitochondria communication. It will be a useful tool to further analyze the physiopathological roles of S1R.


2016 ◽  
Vol 36 (23) ◽  
pp. 2931-2944 ◽  
Author(s):  
David A. Hess ◽  
Katherine M. Strelau ◽  
Anju Karki ◽  
Mei Jiang ◽  
Ana C. Azevedo-Pouly ◽  
...  

Transcriptional networks that govern secretory cell specialization, including instructing cells to develop a unique cytoarchitecture, amass extensive protein synthesis machinery, and be embodied to respond to endoplasmic reticulum (ER) stress, remain largely uncharacterized. In this study, we discovered that the secretory cell transcription factor MIST1 ( Bhlha15 ), previously shown to be essential for cytoskeletal organization and secretory activity, also functions as a potent ER stress-inducible transcriptional regulator. Genome-wide DNA binding studies, coupled with genetic mouse models, revealed MIST1 gene targets that function along the entire breadth of the protein synthesis, processing, transport, and exocytosis networks. Additionally, key MIST1 targets are essential for alleviating ER stress in these highly specialized cells. Indeed, MIST1 functions as a coregulator of the unfolded protein response (UPR) master transcription factor XBP1 for a portion of target genes that contain adjacent MIST1 and XBP1 binding sites. Interestingly, Mist1 gene expression is induced during ER stress by XBP1, but as ER stress subsides, MIST1 serves as a feedback inhibitor, directly binding the Xbp1 promoter and repressing Xbp1 transcript production. Together, our findings provide a new paradigm for XBP1-dependent UPR regulation and position MIST1 as a potential biotherapeutic for numerous human diseases.


Sign in / Sign up

Export Citation Format

Share Document