scholarly journals Caspase 3 Cleavage of the Ste20-Related Kinase SLK Releases and Activates an Apoptosis-Inducing Kinase Domain and an Actin-Disassembling Region

2000 ◽  
Vol 20 (2) ◽  
pp. 684-696 ◽  
Author(s):  
Luc A. Sabourin ◽  
Patrick Seale ◽  
Julian Wagner ◽  
Michael A. Rudnicki

ABSTRACT We have demonstrated that a novel Ste20-related kinase, designated SLK, mediates apoptosis and actin stress fiber dissolution through distinct domains generated by caspase 3 cleavage. Overexpression of SLK in C2C12 myoblasts stimulated the disassembly of actin stress fibers and focal adhesions and induced apoptosis, as determined by annexin V binding and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling analysis. SLK was cleaved by caspase 3 in vitro and in vivo during c-Myc-, tumor necrosis factor alpha, and UV-induced apoptosis. Furthermore, cleavage of SLK released two domains with distinct activities: an activated N-terminal kinase domain that promoted apoptosis and cytoskeletal rearrangements and a C-terminus domain that disassembled actin stress fibers. Moreover, our analysis has identified a novel conserved region (termed the AT1-46 homology domain) that efficiently promotes stress fiber disassembly. Finally, transient transfection of SLK also activated the c-Jun N-terminal kinase signaling pathway. Our results suggest that caspase-activated SLK represents a novel effector of cytoskeletal remodeling and apoptosis.

2002 ◽  
Vol 227 (6) ◽  
pp. 412-424 ◽  
Author(s):  
Imre L. Szabó ◽  
Rama Pai ◽  
Michael K. Jones ◽  
George R. Ehring ◽  
Hirofumi Kawanaka ◽  
...  

Repair of superficial gastric mucosal injury is accomplished by the process of restitution—migration of epithelial cells to restore continuity of the mucosal surface. Actin filaments, focal adhesions, and focal adhesion kinase (FAK) play crucial roles in cell motility essential for restitution. We studied whether epidermal growth factor (EGF) and/or indomethacin (IND) affect cell migration, actin stress fiber formation, and/or phosphorylation of FAK and tensin in wounded gastric monolayers. Human gastric epithelial monolayers (MKN 28 cells) were wounded and treated with either vehicle or 0.5 mM IND for 16 hr followed by EGF. EGF treatment significantly stimulated cell migration and actin stress fiber formation, and increased FAK localization to focal adhesions, and phosphorylation of FAK and tensin, whereas IND inhibited all these at the baseline and EGF-stimulated conditions. IND-induced inhibition of FAK phosphorylation preceded changes in actin polymerization, indicating that actin depolymerization might be the consequence of decreased FAK activity. In in vivo experiments, rats received either vehicle or IND (5 mg/kg i.g.), and 3 min later, they received water or 5% hypertonic NaCl; gastric mucosa was obtained at 1, 4, and 8 hr after injury. Four and 8 hr after hypertonic injury, FAK phosphorylation was induced in gastric mucosa compared with controls. IND pretreatment significantly delayed epithelial restitution in vivo, and reduced FAK phosphorylation and recruitment to adhesion points, as well as actin stress fiber formation in migrating surface epithelial cells. Our study indicates that FAK, tensin, and actin stress fibers are likely mediators of EGF-stimulated cell migration in wounded human gastric monolayers and potential targets for IND-induced inhibition of restitution.


1997 ◽  
Vol 273 (2) ◽  
pp. F283-F288 ◽  
Author(s):  
J. I. Kreisberg ◽  
N. Ghosh-Choudhury ◽  
R. A. Radnik ◽  
M. A. Schwartz

Treatment of renal glomerular mesangial cells with adenosine 3',5'-cyclic monophosphate (cAMP)-elevating agents induces actin stress fiber disassembly, myosin light chain (MLC) dephosphorylation, loss of adhesion to the substratum and cell shape change [J. I. Kreisberg and M. A. Venkatachalam. Am. J. Physiol. 251 (Cell Physiol. 20): C505-C511, 1986]. Thrombin and vasopressin block the effects of cAMP. Because these agents are known to promote stress fiber formation via the small GTP-binding protein Rho, we investigated the effect of an activated variant of Rho on the response to cAMP elevation. Microinjecting V14-Rho completely blocked the effect of cAMP elevation on cell shape and the actin cytoskeleton, whereas inactivating Rho with botulinum C3 exoenzyme induced stress fiber disruption and cell retraction that was indistinguishable from that caused by elevations in intracellular levels of cAMP. Disruption of actin stress fibers by cAMP has previously been ascribed to MLC dephosphorylation; however, both C3 and cytochalasin D also caused dephosphorylation of MLC, whereas blocking MLC dephosphorylation failed to block the cAMP-induced loss of actin stress fibers. We conclude that Rho can modulate the effects of cAMP elevation and suggest that MLC dephosphorylation may be a consequence of actin stress fiber disassembly.


2017 ◽  
Vol 28 (8) ◽  
pp. 1054-1065 ◽  
Author(s):  
Yu-Hung Lin ◽  
Yen-Yi Zhen ◽  
Kun-Yi Chien ◽  
I-Ching Lee ◽  
Wei-Chi Lin ◽  
...  

Nonmuscle myosin II (NM-II) is an important motor protein involved in cell migration. Incorporation of NM-II into actin stress fiber provides a traction force to promote actin retrograde flow and focal adhesion assembly. However, the components involved in regulation of NM-II activity are not well understood. Here we identified a novel actin stress fiber–associated protein, LIM and calponin-homology domains 1 (LIMCH1), which regulates NM-II activity. The recruitment of LIMCH1 into contractile stress fibers revealed its localization complementary to actinin-1. LIMCH1 interacted with NM-IIA, but not NM-IIB, independent of the inhibition of myosin ATPase activity with blebbistatin. Moreover, the N-terminus of LIMCH1 binds to the head region of NM-IIA. Depletion of LIMCH1 attenuated myosin regulatory light chain (MRLC) diphosphorylation in HeLa cells, which was restored by reexpression of small interfering RNA–resistant LIMCH1. In addition, LIMCH1-depleted HeLa cells exhibited a decrease in the number of actin stress fibers and focal adhesions, leading to enhanced cell migration. Collectively, our data suggest that LIMCH1 plays a positive role in regulation of NM-II activity through effects on MRLC during cell migration.


2019 ◽  
Vol 11 (5) ◽  
pp. 175-185 ◽  
Author(s):  
Andreas Müller ◽  
Sandra Müller ◽  
Veselin Nasufovic ◽  
Hans-Dieter Arndt ◽  
Tilo Pompe

Abstract Multiple cellular processes are affected by spatial constraints from the extracellular matrix and neighboring cells. In vitro experiments using defined micro-patterning allow for in-depth analysis and a better understanding of how these constraints impact cellular behavior and functioning. Herein we focused on the analysis of actin cytoskeleton dynamics as a major determinant of mechanotransduction mechanisms in cells. We seeded primary human umbilical vein endothelial cells onto stripe-like cell-adhesive micro-patterns with varying widths and then monitored and quantified the dynamic reorganization of actin stress fibers, including fiber velocities, orientation and density, within these live cells using the cell permeable F-actin marker SiR-actin. Although characteristic parameters describing the overall stress fiber architecture (average orientation and density) were nearly constant throughout the observation time interval of 60 min, we observed permanent transport and turnover of individual actin stress fibers. Stress fibers were more strongly oriented along stripe direction with decreasing stripe width, (5° on 20 μm patterns and 10° on 40 μm patterns), together with an overall narrowing of the distribution of fiber orientation. Fiber dynamics was characterized by a directed movement from the cell edges towards the cell center, where fiber dissolution frequently took place. By kymograph analysis, we found median fiber velocities in the range of 0.2 μm/min with a weak dependence on pattern width. Taken together, these data suggest that cell geometry determines actin fiber orientation, while it also affects actin fiber transport and turnover.


2005 ◽  
Vol 171 (2) ◽  
pp. 209-215 ◽  
Author(s):  
Masaaki Yoshigi ◽  
Laura M. Hoffman ◽  
Christopher C. Jensen ◽  
H. Joseph Yost ◽  
Mary C. Beckerle

Organs and tissues adapt to acute or chronic mechanical stress by remodeling their actin cytoskeletons. Cells that are stimulated by cyclic stretch or shear stress in vitro undergo bimodal cytoskeletal responses that include rapid reinforcement and gradual reorientation of actin stress fibers; however, the mechanism by which cells respond to mechanical cues has been obscure. We report that the application of either unidirectional cyclic stretch or shear stress to cells results in robust mobilization of zyxin from focal adhesions to actin filaments, whereas many other focal adhesion proteins and zyxin family members remain at focal adhesions. Mechanical stress also induces the rapid zyxin-dependent mobilization of vasodilator-stimulated phosphoprotein from focal adhesions to actin filaments. Thickening of actin stress fibers reflects a cellular adaptation to mechanical stress; this cytoskeletal reinforcement coincides with zyxin mobilization and is abrogated in zyxin-null cells. Our findings identify zyxin as a mechanosensitive protein and provide mechanistic insight into how cells respond to mechanical cues.


1998 ◽  
Vol 143 (7) ◽  
pp. 1981-1995 ◽  
Author(s):  
J.C. Norman ◽  
D. Jones ◽  
S.T. Barry ◽  
M.R. Holt ◽  
S. Cockcroft ◽  
...  

Focal adhesion assembly and actin stress fiber formation were studied in serum-starved Swiss 3T3 fibroblasts permeabilized with streptolysin-O. Permeabilization in the presence of GTPγS stimulated rho-dependent formation of stress fibers, and the redistribution of vinculin and paxillin from a perinuclear location to focal adhesions. Addition of GTPγS at 8 min after permeabilization still induced paxillin recruitment to focal adhesion–like structures at the ends of stress fibers, but vinculin remained in the perinuclear region, indicating that the distributions of these two proteins are regulated by different mechanisms. Paxillin recruitment was largely rho-independent, but could be evoked using constitutively active Q71L ADP-ribosylation factor (ARF1), and blocked by NH2-terminally truncated Δ17ARF1. Moreover, leakage of endogenous ARF from cells was coincident with loss of GTPγS- induced redistribution of paxillin to focal adhesions, and the response was recovered by addition of ARF1. The ability of ARF1 to regulate paxillin recruitment to focal adhesions was confirmed by microinjection of Q71LARF1 and Δ17ARF1 into intact cells. Interestingly, these experiments showed that V14RhoA- induced assembly of actin stress fibers was potentiated by Q71LARF1. We conclude that rho and ARF1 activate complimentary pathways that together lead to the formation of paxillin-rich focal adhesions at the ends of prominent actin stress fibers.


1999 ◽  
Vol 112 (20) ◽  
pp. 3433-3441 ◽  
Author(s):  
F. Echtermeyer ◽  
P.C. Baciu ◽  
S. Saoncella ◽  
Y. Ge ◽  
P.F. Goetinck

The formation of focal adhesions and actin stress fibers on fibronectin is dependent on signaling through (β)1 integrins and the heparan sulfate proteoglycan syndecan-4, and we have analyzed the requirement of the glycosaminoglycan chains of syndecan-4 during these events. Chinese hamster ovary cells with mutations in key enzymes of the glycanation process do not synthesize glycosaminoglycan chains and are unable to assemble actin stress fibers and focal contacts when cultured on fibronectin. Transfection of the mutant cells with a cDNA that encodes the core protein of chicken syndecan-4 leads to the production of unglycanated core protein. The overexpression of syndecan-4 core protein in these mutant cells increases cell spreading and is sufficient for these cells to assemble actin stress fibers and focal adhesions similar to wild-type cells seeded on fibronectin and vitronectin matrices. Syndecan-4 core protein colocalizes to focal contacts in mutant cells that have been transfected with the syndecan-4 core protein cDNA. These data indicate an essential role for the core protein of syndecan-4 in the generation of signals leading to actin stress fiber and focal contact assembly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Hillsley ◽  
Javier E. Santos ◽  
Adrianne M. Rosales

AbstractCardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by the de novo assembly of alpha-smooth muscle actin stress fibers; however, there are few methods to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To address this limitation, we present a computer vision model to classify and segment cells containing alpha-smooth muscle actin stress fibers into 2 classes (α-SMA SF+ and α-SMA SF-), with a high degree of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing methods with deep learning techniques to achieve semantic segmentation of the different cell phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid-based hydrogels of various moduli to induce alpha-smooth muscle actin stress fiber formation. The model successfully predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic models, thereby increasing reproducibility in fibroblast phenotypic characterization.


2011 ◽  
Vol 301 (3) ◽  
pp. F554-F564 ◽  
Author(s):  
Sierra Delarosa ◽  
Julie Guillemette ◽  
Joan Papillon ◽  
Ying-Shan Han ◽  
Arnold S. Kristof ◽  
...  

The expression and activation of the Ste20-like kinase, SLK, is increased during renal development and recovery from ischemic acute renal failure. SLK promotes apoptosis, and during renal injury and repair, transcriptional induction or posttranscriptional control of SLK may, therefore, regulate cell survival. SLK contains protein interaction (coiled-coil) domains, suggesting that posttranslational homodimerization may also modulate SLK activity. We therefore expressed coiled-coil regions in the C-terminal domain of SLK as fusion proteins and demonstrated their homodimerization. By gel-filtration chromatography, endogenous and heterologously expressed SLK were detected in a macromolecular protein complex. To test the role of homodimerization in kinase activation, we constructed a fusion protein consisting of the SLK catalytic domain (amino acids 1–373) and a modified FK506 binding protein, Fv (Fv-SLK 1–373). Addition of AP20187 (an analog of FK506) enhanced the homodimerization of Fv-SLK 1–373. In an in vitro kinase assay, the dimeric Fv-SLK 1–373 displayed greater kinase activity than the monomeric form. In cells expressing Fv-SLK 1–373, homodimerization increased activation-specific phosphorylation of the proapoptotic kinases, c-Jun N-terminal kinase and p38 kinase. Compared with the monomer, dimeric Fv-SLK 1–373 enhanced the activation of a Bax promoter-luciferase reporter. Finally, expression of Fv-SLK 1–373 induced apoptosis, and the effect was increased by homodimerization. Thus the activity, downstream signaling, and functional effects of SLK are enhanced by dimerization of the kinase domain.


2017 ◽  
Vol 43 (5) ◽  
pp. 1777-1789 ◽  
Author(s):  
Lei Zhang ◽  
Tianrong Ji ◽  
Qin Wang ◽  
Kexin Meng ◽  
Rui Zhang ◽  
...  

Background/Aims: Recent studies provided compelling evidence that stimulation of the calcium sensing receptor (CaSR) exerts direct renoprotective action at the glomerular podocyte level. This protective action may be attributed to the RhoA-dependent stabilization of the actin cytoskeleton. However, the underlying mechanisms remain unclear. Methods: In the present study, an immortalized human podocyte cell line was used. Fluo-3 fluorescence was utilized to determine intracellular Ca2+ concentration ([Ca2+]i), and western blotting was used to measure canonical transient receptor potential 6 (TRPC6) protein expression and RhoA activity. Stress fibers were detected by FITC-phalloidin. Results: Activating CaSR with a high extracellular Ca2+ concentration ([Ca2+]o) or R-568 (a type II CaSR agonist) induces an increase in the [Ca2+]i in a dose-dependent manner. This increase in [Ca2+]i is phospholipase C (PLC)-dependent and is smaller in the absence of extracellular Ca2+ than in the presence of 0.5 mM [Ca2+]o. The CaSR activation-induced [Ca2+]i increase is attenuated by the pharmacological blockage of TRPC6 channels or siRNA targeting TRPC6. These data suggest that TRPC6 is involved in CaSR activation-induced Ca2+ influx. Consistent with a previous study, CaSR stimulation results in an increase in RhoA activity. However, the knockdown of TRPC6 significantly abolished the RhoA activity increase induced by CaSR stimulation, suggesting that TRPC6-dependent Ca2+ entry is required for RhoA activation. The activated RhoA is involved in the formation of stress fibers and focal adhesions in response to CaSR stimulation because siRNA targeting RhoA attenuated the increase in the stress fiber mediated by CaSR stimulation. Moreover, this effect of CaSR activation on the formation of stress fibers is also abolished by the knockdown of TRPC6. Conclusion: TRPC6 is involved in the regulation of stress fiber formation and focal adhesions via the RhoA pathway in response to CaSR activation. This may explain the direct protective action of CaSR agonists.


Sign in / Sign up

Export Citation Format

Share Document