scholarly journals DNA Integration by Ty Integrase in yku70Mutant Saccharomyces cerevisiae Cells

2000 ◽  
Vol 20 (23) ◽  
pp. 8836-8844 ◽  
Author(s):  
Markus Kiechle ◽  
Anna A. Friedl ◽  
Palaniyandi Manivasakam ◽  
Friederike Eckardt-Schupp ◽  
Robert H. Schiestl

ABSTRACT In the present work we examined nonhomologous integration of plasmid DNA in a yku70 mutant. Ten of 14 plasmids integrated as composite elements, including Ty sequences probably originating from erroneous strand-switching and/or priming events. Three additional plasmids integrated via Ty integrase without cointegrating Ty sequences, as inferred from 5-bp target site duplication and integration site preferences. Ty integrase-mediated integration of non-Ty DNA has never been observed in wild-type cells, although purified integrase is capable of using non-Ty DNA as a substrate in vitro. Hence our data implicate yKu70 as the cellular function preventing integrase from accepting non-Ty DNA as a substrate.

Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 761-776 ◽  
Author(s):  
Lori A Rinckel ◽  
David J Garfinkel

Abstract In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A Δhta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a Δhta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the Δhta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.


1989 ◽  
Vol 9 (10) ◽  
pp. 4467-4472
Author(s):  
M Altmann ◽  
N Sonenberg ◽  
H Trachsel

The gene encoding translation initiation factor 4E (eIF-4E) from Saccharomyces cerevisiae was randomly mutagenized in vitro. The mutagenized gene was reintroduced on a plasmid into S. cerevisiae cells having their only wild-type eIF-4E gene on a plasmid under the control of the regulatable GAL1 promoter. Transcription from the GAL1 promoter (and consequently the production of wild-type eIF-4E) was then shut off by plating these cells on glucose-containing medium. Under these conditions, the phenotype conferred upon the cells by the mutated eIF-4E gene became apparent. Temperature-sensitive S. cerevisiae strains were identified by replica plating. The properties of one strain, 4-2, were further analyzed. Strain 4-2 has two point mutations in the eIF-4E gene. Upon incubation at 37 degrees C, incorporation of [35S]methionine was reduced to 15% of the wild-type level. Cell-free translation systems derived from strain 4-2 were dependent on exogenous eIF-4E for efficient translation of certain mRNAs, and this dependence was enhanced by preincubation of the extract at 37 degrees C. Not all mRNAs tested required exogenous eIF-4E for translation.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


2004 ◽  
Vol 78 (11) ◽  
pp. 5848-5855 ◽  
Author(s):  
Konstantin D. Taganov ◽  
Isabel Cuesta ◽  
René Daniel ◽  
Lisa Ann Cirillo ◽  
Richard A. Katz ◽  
...  

ABSTRACT Integration of viral DNA into the host chromosome is an obligatory step in retroviral replication and is dependent on the activity of the viral enzyme integrase. To examine the influence of chromatin structure on retroviral DNA integration in vitro, we used a model target comprising a 13-nucleosome extended array that includes binding sites for specific transcription factors and can be compacted into a higher-ordered structure. We found that the efficiency of in vitro integration catalyzed by human immunodeficiency virus type 1 (HIV-1) integrase was decreased after compaction of this target with histone H1. In contrast, integration by avian sarcoma virus (ASV) integrase was more efficient after compaction by either histone H1 or a high salt concentration, suggesting that the compacted structure enhances this reaction. Furthermore, although site-specific binding of transcription factors HNF3 and GATA4 blocked ASV DNA integration in extended nucleosome arrays, local opening of H1-compacted chromatin by HNF3 had no detectable effect on integration, underscoring the preference of ASV for compacted chromatin. Our results indicate that chromatin structure affects integration site selection of the HIV-1 and ASV integrases in opposite ways. These distinct properties of integrases may also affect target site selection in vivo, resulting in an important bias against or in favor of integration into actively transcribed host DNA.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


1988 ◽  
Vol 8 (6) ◽  
pp. 2523-2535
Author(s):  
J H Hegemann ◽  
J H Shero ◽  
G Cottarel ◽  
P Philippsen ◽  
P Hieter

Saccharomyces cerevisiae centromeres have a characteristic 120-base-pair region consisting of three distinct centromere DNA sequence elements (CDEI, CDEII, and CDEIII). We have generated a series of 26 CEN mutations in vitro (including 22 point mutations, 3 insertions, and 1 deletion) and tested their effects on mitotic chromosome segregation by using a new vector system. The yeast transformation vector pYCF5 was constructed to introduce wild-type and mutant CEN DNAs onto large, linear chromosome fragments which are mitotically stable and nonessential. Six point mutations in CDEI show increased rates of chromosome loss events per cell division of 2- to 10-fold. Twenty mutations in CDEIII exhibit chromosome loss rates that vary from wild type (10(-4)) to nonfunctional (greater than 10(-1)). These results directly identify nucleotides within CDEI and CDEIII that are required for the specification of a functional centromere and show that the degree of conservation of an individual base does not necessarily reflect its importance in mitotic CEN function.


1986 ◽  
Vol 6 (2) ◽  
pp. 404-410 ◽  
Author(s):  
T Fujimura ◽  
R B Wickner

pet18 mutations in Saccharomyces cerevisiae confer on the cell the inability to maintain either L-A or M double-stranded RNAs (dsRNAs) at the nonpermissive temperature. In in vitro experiments, we examined the effects of pet18 mutations on the RNA-dependent RNA polymerase activity associated with virus-like particles (VLPs). pet18 mutations caused thermolabile RNA polymerase activity of L-A VLPs, and this thermolability was found to be due to the instability of the L-A VLP structure. The pet18 mutations did not affect RNA polymerase activity of M VLPs. Furthermore, the temperature sensitivity of wild-type L-A RNA polymerase differed substantially from that of M RNA polymerase. From these results, and from other genetic and biochemical lines of evidence which suggest that replication of M dsRNA requires the presence of L-A dsRNA, we propose that the primary effect of the pet18 mutation is on the L-A VLP structure and that the inability of pet18 mutants to maintain M dsRNA comes from the loss of L-A dsRNA.


2003 ◽  
Vol 2 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Liping Wu ◽  
Jing Pan ◽  
Vala Thoroddsen ◽  
Deborah R. Wysong ◽  
Ronald K. Blackman ◽  
...  

ABSTRACT A genetic approach utilizing the yeast Saccharomyces cerevisiae was used to identify the target of antifungal compounds. This analysis led to the identification of small molecule inhibitors of RNA polymerase (Pol) III from Saccharomyces cerevisiae. Three lines of evidence show that UK-118005 inhibits cell growth by targeting RNA Pol III in yeast. First, a dominant mutation in the g domain of Rpo31p, the largest subunit of RNA Pol III, confers resistance to the compound. Second, UK-118005 rapidly inhibits tRNA synthesis in wild-type cells but not in UK-118005 resistant mutants. Third, in biochemical assays, UK-118005 inhibits tRNA gene transcription in vitro by the wild-type but not the mutant Pol III enzyme. By testing analogs of UK-118005 in a template-specific RNA Pol III transcription assay, an inhibitor with significantly higher potency, ML-60218, was identified. Further examination showed that both compounds are broad-spectrum inhibitors, displaying activity against RNA Pol III transcription systems derived from Candida albicans and human cells. The identification of these inhibitors demonstrates that RNA Pol III can be targeted by small synthetic molecules.


1998 ◽  
Vol 11 (11) ◽  
pp. 1136-1141 ◽  
Author(s):  
Jaesung Nam ◽  
Kirankumar S. Mysore ◽  
Stanton B. Gelvin

The Arabidopsis thaliana mutants uvh1 and rad5, originally identified as radiation hypersensitive, were reported to be deficient in T-DNA integration based on the relative efficiencies of stable transformation and T-DNA transfer. We reassessed these mutants for susceptibility to transformation by Agrobacterium tumefaciens. The mutant rad5 showed a significant reduction in the efficiency of transient as well as stable transformation, compared with its wild-type progenitor. These data indicate that rad5 is blocked at a step in the transformation process prior to T-DNA integration. We additionally found, using both an in vitro root inoculation and an in vivo flower bolt inoculation assay, that the mutant uvh1 is as susceptible to A. tumefaciens-mediated transformation as is its wild-type progenitor, C10.


2008 ◽  
Vol 28 (7) ◽  
pp. 2380-2390 ◽  
Author(s):  
Hong Ji ◽  
Christopher J. Adkins ◽  
Bethany R. Cartwright ◽  
Katherine L. Friedman

ABSTRACT In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.


Sign in / Sign up

Export Citation Format

Share Document