scholarly journals Human TAFII130 Is a Coactivator for NFATp

2001 ◽  
Vol 21 (10) ◽  
pp. 3503-3513 ◽  
Author(s):  
Loree J. Kim ◽  
Anita G. Seto ◽  
Tuan N. Nguyen ◽  
James A. Goodrich

ABSTRACT NFATp is one member of a family of transcriptional activators that regulate the expression of cytokine genes. To study mechanisms of NFATp transcriptional activation, we established a reconstituted transcription system consisting of human components that is responsive to activation by full-length NFATp. The TATA-associated factor (TAFII) subunits of the TFIID complex were required for NFATp-mediated activation in this transcription system, since TATA-binding protein (TBP) alone was insufficient in supporting activated transcription. In vitro interaction assays revealed that human TAFII130 (hTAFII130) and itsDrosophila melanogaster homolog dTAFII110 bound specifically and reproducibly to immobilized NFATp. Sequences contained in the C-terminal domain of NFATp (amino acids 688 to 921) were necessary and sufficient for hTAFII130 binding. A partial TFIID complex assembled from recombinant hTBP, hTAFII250, and hTAFII130 supported NFATp-activated transcription, demonstrating the ability of hTAFII130 to serve as a coactivator for NFATp in vitro. Overexpression of hTAFII130 in Cos-1 cells inhibited NFATp activation of a luciferase reporter. These studies demonstrate that hTAFII130 is a coactivator for NFATp and represent the first biochemical characterization of the mechanism of transcriptional activation by the NFAT family of activators.

2002 ◽  
Vol 70 (6) ◽  
pp. 2805-2811 ◽  
Author(s):  
Thomas B. Broudy ◽  
Vijaykumar Pancholi ◽  
Vincent A. Fischetti

ABSTRACT The role lysogenic bacteriophage play in the pathogenesis of the host bacterium is poorly understood. In a previous study, we found that streptococcal coculture with human pharyngeal cells resulted in the induction of lysogenic bacteriophage as well as the phage-associated streptococcal pyrogenic exotoxin C (SpeC). In this study, we have determined that in addition to SpeC induction, a number of other streptococcal proteins are also released by the bacteria during coculture with pharyngeal cells. Among these, we identified and characterized a novel 27-kDa secreted protein. Sequence analysis of this novel protein demonstrated it to be encoded by the same lysogenic bacteriophage which harbors speC. Protein sequence analysis revealed varied homologies with several streptococcal DNases. Further biochemical characterization of the recombinantly expressed protein verified it to be a divalent cation-dependent streptococcal phage-encoded DNase (Spd1). Although functionally distinct, SpeC and Spd1 are associated by a number of parameters, including genetic proximity and transcriptional regulation. Finally, we speculate on the induction of phage-encoded DNase (Spd1) enhancing the fitness of both bacteria and phage.


1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


1985 ◽  
Vol 101 (2) ◽  
pp. 427-440 ◽  
Author(s):  
E Bartnik ◽  
M Osborn ◽  
K Weber

To screen invertebrate tissues for the possible expression of intermediate filaments (IFs), immunofluorescence microscopy with the monoclonal antibody anti-IFA known to detect all mammalian IF proteins was used (Pruss, R. M., R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton. 1981. Cell, 27:419-428). In a limited survey, the lower chordate Branchiostoma as well as the invertebrates Arenicola, Lumbricus, Ascaris, and Helix pomatia revealed a positive reaction primarily on epithelia and on nerves, whereas certain other invertebrates appeared negative. To assess the nature of the positive reaction, Helix pomatia was used since a variety of epithelia was strongly stained by anti-IFA. Fixation-extraction procedures were developed that preserve in electron micrographs of esophagus impressive arrays of IFs as tonofilament bundles. Fractionation procedures performed on single cell preparations document large meshworks of long and curvilinear IF by negative stain. These structures can be purified. One- and two-dimensional gels show three components, all of which are recognized by anti-IFA in immunoblotting: 66 kD/pl 6.35, 53 kD/pl 6.05, and 52 kD/pl 5.95. The molar ratio between the larger and more basic polypeptide and the sum of the two more acidic forms is close to 1. After solubilization in 8.5 M urea, in vitro filament reconstitution is induced when urea is removed by dialysis against 2-50 mM Tris buffer at pH 7.8. The reconstituted filaments contain all three polypeptides. The results establish firmly the existence of invertebrate IFs outside neurones and demonstrate that the esophagus of Helix pomatia displays IFs which in line with the epithelial morphology of the tissue could be related to keratin IF of vertebrates.


2018 ◽  
Vol 11 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Limin Liu ◽  
Peng Zhang ◽  
Ming Bai ◽  
Lijie He ◽  
Lei Zhang ◽  
...  

Abstract Hypoxia plays an important role in the genesis and progression of renal fibrosis. The underlying mechanisms, however, have not been sufficiently elucidated. We examined the role of p53 in hypoxia-induced renal fibrosis in cell culture (human and rat renal tubular epithelial cells) and a mouse unilateral ureteral obstruction (UUO) model. Cell cycle of tubular cells was determined by flow cytometry, and the expression of profibrogenic factors was determined by RT-PCR, immunohistochemistry, and western blotting. Chromatin immunoprecipitation and luciferase reporter experiments were performed to explore the effect of HIF-1α on p53 expression. We showed that, in hypoxic tubular cells, p53 upregulation suppressed the expression of CDK1 and cyclins B1 and D1, leading to cell cycle (G2/M) arrest (or delay) and higher expression of TGF-β, CTGF, collagens, and fibronectin. p53 suppression by siRNA or by a specific p53 inhibitor (PIF-α) triggered opposite effects preventing the G2/M arrest and profibrotic changes. In vivo experiments in the UUO model revealed similar antifibrotic results following intraperitoneal administration of PIF-α (2.2 mg/kg). Using gain-of-function, loss-of-function, and luciferase assays, we further identified an HRE3 region on the p53 promoter as the HIF-1α-binding site. The HIF-1α–HRE3 binding resulted in a sharp transcriptional activation of p53. Collectively, we show the presence of a hypoxia-activated, p53-responsive profibrogenic pathway in the kidney. During hypoxia, p53 upregulation induced by HIF-1α suppresses cell cycle progression, leading to the accumulation of G2/M cells, and activates profibrotic TGF-β and CTGF-mediated signaling pathways, causing extracellular matrix production and renal fibrosis.


2012 ◽  
Vol 86 (16) ◽  
pp. 8375-8387 ◽  
Author(s):  
Marie Galloux ◽  
Bogdan Tarus ◽  
Ilfad Blazevic ◽  
Jenna Fix ◽  
Stéphane Duquerroy ◽  
...  

The human respiratory syncytial virus (HRSV) genome is composed of a negative-sense single-stranded RNA that is tightly associated with the nucleoprotein (N). This ribonucleoprotein (RNP) complex is the template for replication and transcription by the viral RNA-dependent RNA polymerase. RNP recognition by the viral polymerase involves a specific interaction between the C-terminal domain of the phosphoprotein (P) (PCTD) and N. However, the P binding region on N remains to be identified. In this study, glutathioneS-transferase (GST) pulldown assays were used to identify the N-terminal core domain of HRSV N (NNTD) as a P binding domain. A biochemical characterization of the PCTDand molecular modeling of the NNTDallowed us to define four potential candidate pockets on N (pocket I [PI] to PIV) as hydrophobic sites surrounded by positively charged regions, which could constitute sites complementary to the PCTDinteraction domain. The role of selected amino acids in the recognition of the N-RNA complex by P was first screened for by site-directed mutagenesis using a polymerase activity assay, based on an HRSV minigenome containing a luciferase reporter gene. When changed to Ala, most of the residues of PI were found to be critical for viral RNA synthesis, with the R132A mutant having the strongest effect. These mutations also reduced or abolishedin vitroandin vivoP-N interactions, as determined by GST pulldown and immunoprecipitation experiments. The pocket formed by these residues is critical for P binding to the N-RNA complex, is specific for pneumovirus N proteins, and is clearly distinct from the P binding sites identified so far for other nonsegmented negative-strand viruses.


1989 ◽  
Vol 9 (11) ◽  
pp. 4746-4749 ◽  
Author(s):  
D I Chasman ◽  
J Leatherwood ◽  
M Carey ◽  
M Ptashne ◽  
R D Kornberg

Fusion proteins known to activate transcription in vivo were tested for the ability to stimulate transcription in vitro in a recently developed Saccharomyces cerevisiae RNA polymerase II transcription system. One fusion protein, whose activation domain was derived from the herpesvirus transcriptional activator VP16, gave more than 100-fold stimulation in the in vitro system. The order of effects of the various proteins was the same for transcription in vitro and in vivo, suggesting that the natural mechanism of activation is preserved in vitro.


1994 ◽  
Vol 14 (6) ◽  
pp. 3927-3937
Author(s):  
M Kretzschmar ◽  
G Stelzer ◽  
R G Roeder ◽  
M Meisterernst

We have isolated from a crude Hela cell cofactor fraction (USA) a novel positive cofactor that cooperates with the general transcription machinery to effect efficient stimulation of transcription by GAL4-AH, a derivative of the Saccharomyces cerevisiae regulatory factor GAL4. PC2 was shown to be a 500-kDa protein complex and to be functionally and biochemically distinct from native TFIID and previously identified cofactors. In the presence of native TFIID and other general factors, PC2 was necessary and sufficient for activation by GAL4-AH. Cofactor function was specific for transcriptional activation domains of GAL4-AH. The repressor histone H1 further potentiated but was not required for activation of transcription by GAL4-AH. On the basis of the observation that PC2 exerts entirely positive effects on transcription, we propose a model in which PC2 increases the activity of the preinitiation complex in the presence of an activator, thereby establishing a specific pathway during activation of RNA polymerase II.


1990 ◽  
Vol 10 (6) ◽  
pp. 2832-2839
Author(s):  
A S Ponticelli ◽  
K Struhl

The promoter region of the Saccharomyces cerevisiae his3 gene contains two TATA elements, TC and TR, that direct transcription initiation to two sites designated +1 and +13. On the basis of differences between their nucleotide sequences and their responsiveness to upstream promoter elements, it has previously been proposed that TC and TR promote transcription by different molecular mechanisms. To begin a study of his3 transcription in vitro, we used S. cerevisiae nuclear extracts together with various DNA templates and transcriptional activator proteins that have been characterized in vivo. We demonstrated accurate transcription initiation in vitro at the sites used in vivo, transcriptional activation by GCN4, and activation by a GAL4 derivative on various gal-his3 hybrid promoters. In all cases, transcription stimulation was dependent on the presence of an acidic activation region in the activator protein. In addition, analysis of promoters containing a variety of TR derivatives indicated that the level of transcription in vitro was directly related to the level achieved in vivo. The results demonstrated that the in vitro system accurately reproduced all known aspects of in vivo his3 transcription that depend on the TR element. However, in striking contrast to his3 transcription in vivo, transcription in vitro yielded approximately 20 times more of the +13 transcript than the +1 transcript. This result was not due to inability of the +1 initiation site to be efficiently utilized in vitro, but rather it reflects the lack of TC function in vitro. The results support the idea that TC and TR mediate transcription from the wild-type promoter by distinct mechanisms.


Sign in / Sign up

Export Citation Format

Share Document