scholarly journals mRTVP-1, a Novel p53 Target Gene with Proapoptotic Activities

2002 ◽  
Vol 22 (10) ◽  
pp. 3345-3357 ◽  
Author(s):  
Chengzhen Ren ◽  
Likun Li ◽  
Alexei A. Goltsov ◽  
Terry L. Timme ◽  
Salahaldin A. Tahir ◽  
...  

ABSTRACT We identified a novel mouse gene, mRTVP-1, as a p53 target gene using differential display PCR and extensive promoter analysis. The mRTVP-1 protein has 255 amino acids and differs from the human RTVP-1 (hRTVP-1) protein by two short in-frame deletions of two and nine amino acids. RTVP-1 mRNA was induced in multiple cancer cell lines by adenovirus-mediated delivery of p53 and by gamma irradiation or doxorubicin both in the presence and in the absence of endogenous p53. Analysis of RTVP-1 expression in nontransformed and transformed cells further supported p53-independent gene regulation. Using luciferase reporter and electrophoretic mobility shift assays we identified a p53 binding site within intron 1 of the mRTVP-1 gene. Overexpression of mRTVP-1 or hRTVP-1 induced apoptosis in multiple cancer cell lines including prostate cancer cell lines 148-1PA, 178-2BMA, PC-3, TSU-Pr1, and LNCaP, a human lung cancer cell line, H1299, and two isogenic human colon cancer cell lines, HCT116 p53+/+ and HCT116 p53−/−, as demonstrated by annexin V positivity, phase-contrast microscopy, and in selected cases 4′,6′-diamidino-2-phenylindole staining and DNA fragmentation. Deletion of the signal peptide from the N terminus of RTVP-1 reduced its apoptotic activities, suggesting that a secreted and soluble form of RTVP-1 may mediate, in part, its proapoptotic activities.

Toxins ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Irasema Oroz-Parra ◽  
Mario Navarro ◽  
Karla Cervantes-Luevano ◽  
Carolina Álvarez-Delgado ◽  
Guy Salvesen ◽  
...  

1988 ◽  
Vol 58 (4) ◽  
pp. 437-440 ◽  
Author(s):  
J Carmichael ◽  
JB Mitchell ◽  
N Friedman ◽  
AF Gazdar ◽  
A Russo

1999 ◽  
Vol 46 (2) ◽  
pp. 185
Author(s):  
Hyung Seok Choi ◽  
Chul Gyu Yoo ◽  
Choon Taek Lee ◽  
Young Whan Kim ◽  
Sung Koo Han ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 936
Author(s):  
Ze Yang ◽  
Qiu Zhong ◽  
Shilong Zheng ◽  
Guangdi Wang ◽  
Ling He

A series of novel 1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-diones were designed and synthesized by using 4-aminophenol and α-glycolic acid or lactic acid as starting materials in three or four steps. The key step is the metal-catalyzed oxidative cyclization of the amide to 1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-diones (10a and 10b), the reaction conditions of which are investigated and optimized. The anticancer activity of 17 1-oxa-4-azaspiro[4.5]deca-6,9-diene-3,8-dione derivatives was evaluated. Preliminary results showed that 15 compounds have moderate to potent activity against human lung cancer A549, human breast cancer MDA-MB-231, and human cervical cancer HeLa cancer cell lines. Among them, compounds 11b and 11h were the most potent against A549 cell line with 0.18 and 0.19 µM of IC50, respectively; compounds 11d, 11h, and 11k showed the most potent cytotoxicity against MDA-MB-231 cell line with 0.08, 0.08, and 0.09 µM of IC50, respectively, while the activities of 11h, 11k, and 12c against HeLa cell line were the most potent with 0.15, 0.14, and 0.14 µM of IC50, respectively. Compound 11h is a promising candidate for further development, which emerged as the most effective compound overall against the three tested cancer cell lines.


2020 ◽  
Author(s):  
Ulrike Schmidt ◽  
Gerwin Heller ◽  
Gerald Timelthaler ◽  
Petra Heffeter ◽  
Zsolt Somodi ◽  
...  

Abstract Background Gene amplification of MET, which encodes for the receptor tyrosine kinase c-MET, occurs in a variety of human cancers. High c-MET levels often correlate with poor cancer prognosis. Interleukin-like EMT inducer (ILEI) is also overexpressed in many cancers and is associated with metastasis and poor survival. The gene for ILEI, FAM3C, is located close to MET on chromosome 7q31 in an amplification “hotspot”, but it is unclear whether FAMC3 amplification contributes to elevated ILEI expression in cancer. In this study we have investigated FAMC3 copy number gain in different cancers and its potential connection to MET amplifications.Methods FAMC3 and MET copy numbers were investigated in various cancer samples and 200 cancer cell lines. Copy numbers of the two genes were correlated with mRNA levels, with relapse-free survival in lung cancer patient samples as well as with clinicopathological parameters in primary samples from 49 advanced stage colorectal cancer patients. ILEI knock-down and c-MET inhibition effects on proliferation and invasiveness of five cancer cell lines and growth of xenograft tumors in mice were then investigated. Results FAMC3 was amplified in strict association with MET amplification in several human cancers and cancer cell lines. Increased FAM3C and MET copy numbers were tightly linked and correlated with increased gene expression and poor survival in human lung cancer and with extramural invasion in colorectal carcinoma. Stable ILEI shRNA knock-down did not influence proliferation or sensitivity towards c-MET-inhibitor induced proliferation arrest in cancer cells but impaired both c-MET-independent and -dependent cancer cell invasion. c-MET inhibition reduced ILEI secretion, and shRNA mediated ILEI knock-down prevented c-MET-signaling induced elevated expression and secretion of matrix metalloproteinase (MMP)-2 and MMP-9. Combination of ILEI knock-down and c-MET-inhibition significantly reduced the invasive outgrowth of NCI-H441 and NCI-H1993 lung tumor xenografts by inhibiting proliferation, MMP expression and E-cadherin membrane localization.Conclusions These novel findings suggest MET amplifications are often in reality MET-FAM3C co-amplifications with tight functional cooperation. Therefore, the clinical relevance of this frequent cancer amplification hotspot, so far dedicated purely to c-MET function, should be re-evaluated to include ILEI as a target in the therapy of c-MET-amplified human carcinomas.


2011 ◽  
Vol 02 (01) ◽  
pp. 40-53 ◽  
Author(s):  
Yoshiko Yasuda ◽  
Yasuhiro Maeda ◽  
Satoshi Hara ◽  
Motoyoshi Tanaka ◽  
Eiji Koike ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document