scholarly journals Distinct Mutations in Yeast TAFII25 Differentially Affect the Composition of TFIID and SAGA Complexes as Well as Global Gene Expression Patterns

2002 ◽  
Vol 22 (9) ◽  
pp. 3178-3193 ◽  
Author(s):  
Doris B. Kirschner ◽  
Elmar vom Baur ◽  
Christelle Thibault ◽  
Steven L. Sanders ◽  
Yann-Gaël Gangloff ◽  
...  

ABSTRACT The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAFIIs), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAFII-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAFII25. We define a minimal evolutionarily conserved 91-amino-acid region of TAFII25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAFII25 or chimeras with the human homologue TAFII30 arrested cell growth at either the G1 or G2/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAFII25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAFII25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAFII25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAFII mutant allele reflects the full range of its normal functions.

2003 ◽  
Vol 31 (2) ◽  
pp. 291-303 ◽  
Author(s):  
JM Weitzel ◽  
S Hamann ◽  
M Jauk ◽  
M Lacey ◽  
A Filbry ◽  
...  

Thyroid hormone (T3) is essential for normal development, differentiation and metabolic balance. We have performed DNA microarray experiments using hepatic RNA from hypothyroid and T3-treated hypothyroid rats in order to characterize T3-induced gene expression patterns after various time points (6, 24 and 48 h after the administration of the hormone). Sixty-two of 4608 different genes displayed a reproducible T3-response, and cluster analysis divided these differentially regulated genes into six expression patterns. Thirty-six genes were not significantly regulated within the first 24 h. Transient transfection experiments of eight late-induced gene promoters failed to detect a thyroid hormone response element within their regulatory elements, suggesting an indirect activation mechanism(s). In search for an intermediate factor of T3 action, we examined whether various rather ubiquitous transcription factors, peroxisome proliferator-activated receptors (PPARs) and coactivators of the PPARgamma coactivator 1 family (PGC-1) are regulated by T3. Only PPARgamma and PERC/PGC-1beta exhibit a significant T3-response within the first 6 h after treatment, identifying these factors as candidate components for mediating the late-induced expression pattern. Regulation of early-induced genes within the first 6 h after administration of T3 on transcript levels correlates with altered protein levels after 24 and 48 h in vivo.


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S8-S9
Author(s):  
M Bauer ◽  
H Kirsten ◽  
E Grunow ◽  
P Ahnert ◽  
M Kiehntopf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document