scholarly journals Identification and Characterization of a Candida albicans Mating Pheromone

2003 ◽  
Vol 23 (22) ◽  
pp. 8189-8201 ◽  
Author(s):  
Richard J. Bennett ◽  
M. Andrew Uhl ◽  
Mathew G. Miller ◽  
Alexander D. Johnson

ABSTRACT Candida albicans, the most prevalent fungal pathogen of humans, has recently been shown to undergo mating. Here we describe a mating pheromone produced by C. albicans α cells and show that the gene which encodes it (MFα) is required for α cells, but not a cells, to mate. We also identify the receptor for this mating pheromone as the product of the STE2 gene and show that this gene is required for the mating of a cells, but not α cells. Cells of the a mating type respond to the α mating pheromone by producing long polarized projections, similar to those observed in bona fide mating mixtures of C. albicans a and α cells. During this process, transcription of approximately 62 genes is induced. Although some of these genes correspond to those induced in Saccharomyces cerevisiae by S. cerevisiae α-factor, most are specific to the C. albicans pheromone response. The most surprising class encode cell surface and secreted proteins previously implicated in virulence of C. albicans in a mouse model of disseminated candidiasis. This observation suggests that aspects of cell-cell communication in mating may have been evolutionarily adopted for host-pathogen interactions in C. albicans.

2003 ◽  
Vol 2 (6) ◽  
pp. 1350-1360 ◽  
Author(s):  
Sneh L. Panwar ◽  
Melanie Legrand ◽  
Daniel Dignard ◽  
Malcolm Whiteway ◽  
Paul. T. Magee

ABSTRACT Candida albicans, the single most frequently isolated human fungal pathogen, was thought to be asexual until the recent discovery of the mating-type-like locus (MTL). Homozygous MTL strains were constructed and shown to mate. Furthermore, it has been demonstrated that opaque-phase cells are more efficient in mating than white-phase cells. The similarity of the genes involved in the mating pathway in Saccharomyces cerevisiae and C. albicans includes at least one gene (KEX2) that is involved in the processing of the α mating pheromone in the two yeasts. Taking into account this similarity, we searched the C. albicans genome for sequences that would encode the α pheromone gene. Here we report the isolation and characterization of the gene MFα1, which codes for the precursor of the α mating pheromone in C. albicans. Two active α-peptides, 13 and 14 amino acids long, would be generated after the precursor molecule is processed in C. albicans. To examine the role of this gene in mating, we constructed an mfα1 null mutant of C. albicans. The mfα1 null mutant fails to mate as MTLα, while MTLa mfα1 cells are still mating competent. Experiments performed with the synthetic α-peptides show that they are capable of inducing growth arrest, as demonstrated by halo tests, and also induce shmooing in MTLa cells of C. albicans. These peptides are also able to complement the mating defect of an MTLα kex2 mutant strain when added exogenously, thereby confirming their roles as α mating pheromones.


2004 ◽  
Vol 72 (2) ◽  
pp. 667-677 ◽  
Author(s):  
Jeremy Geiger ◽  
Deborah Wessels ◽  
Shawn R. Lockhart ◽  
David R. Soll

ABSTRACT Previous studies employing transmembrane assays suggested that Candida albicans and related species, as well as Saccharomyces cerevisiae, release chemoattractants for human polymorphonuclear leukocytes (PMNs). Because transmembrane assays do not definitively distinguish between chemokinesis and chemotaxis, single-cell chemotaxis assays were used to confirm these findings and test whether mating-type or white-opaque switching affects the release of attractant. Our results demonstrate that C. albicans, C. dubliniensis, C. tropicalis, C. parapsilosis, and C. glabrata release bona fide chemoattractants for PMNs. S. cerevisiae, however, releases a chemokinetic factor but not a chemoattractant. Characterization of the C. albicans chemoattractant revealed that it is a peptide of approximately 1 kDa. Whereas the mating type of C. albicans did not affect the release of chemoattractant, switching did. White-phase cells released chemoattractant, but opaque-phase cells did not. Since the opaque phase of C. albicans represents the mating-competent phenotype, it may be that opaque-phase cells selectively suppress the release of chemoattractant to facilitate mating.


2018 ◽  
Vol 18 (5) ◽  
Author(s):  
Lina Heistinger ◽  
Josef Moser ◽  
Nadine E Tatto ◽  
Minoska Valli ◽  
Brigitte Gasser ◽  
...  

1986 ◽  
Vol 6 (6) ◽  
pp. 2106-2114
Author(s):  
A Hartig ◽  
J Holly ◽  
G Saari ◽  
V L MacKay

The Saccharomyces cerevisiae STE2 gene, which is required for pheromone response and conjugation specifically in mating-type a cells, was cloned by complementation of the ste2 mutation. Transcription of STE2 is repressed by the MAT alpha 2 gene product, so that the 1.4-kilobase STE2 RNA is detected only in a or mat alpha 2 strains, not in alpha or a/alpha cells. However, STE2 RNA levels are also increased by the mating pheromone alpha-factor and decreased in strains bearing mutations in the nonspecific STE4 gene. Regulation of STE2 expression in a cells is therefore achieved by several mechanisms.


2009 ◽  
Vol 23 (8) ◽  
pp. 2349-2359 ◽  
Author(s):  
Karin Strijbis ◽  
Carlo W. T. Van Roermund ◽  
Guy P. Hardy ◽  
Janny Van den Burg ◽  
Karien Bloem ◽  
...  

Nanoscale ◽  
2017 ◽  
Vol 9 (41) ◽  
pp. 15911-15922 ◽  
Author(s):  
Amy Lyden ◽  
Lisa Lombardi ◽  
Wilfried Sire ◽  
Peng Li ◽  
Jeremy C. Simpson ◽  
...  

Carboxylate nanoparticles bind strongly to hyphal adhesin Als3 ofCandida albicansand the interaction is related to the physiochemical properties of particles.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e63949 ◽  
Author(s):  
Peter Arne Gerber ◽  
Peter Hevezi ◽  
Bettina Alexandra Buhren ◽  
Cynthia Martinez ◽  
Holger Schrumpf ◽  
...  

2000 ◽  
Vol 182 (11) ◽  
pp. 3063-3071 ◽  
Author(s):  
Claudia Timpel ◽  
Sigrid Zink ◽  
Sabine Strahl-Bolsinger ◽  
Klaus Schröppel ◽  
Joachim Ernst

ABSTRACT Protein mannosyltransferases (Pmt proteins) initiate O glycosylation of secreted proteins in fungi. We have characterizedPMT6, which encodes the second Pmt protein of the fungal pathogen Candida albicans. The residues of Pmt6p are 21 and 42% identical to those of C. albicans Pmt1p and S. cerevisiae Pmt6p, respectively. Mutants lacking one or twoPMT6 alleles grow normally and contain normal Pmt enzymatic activities in cell extracts but show phenotypes including a partial block of hyphal formation (dimorphism) and a supersensitivity to hygromycin B. The morphogenetic defect can be suppressed by overproduction of known components of signaling pathways, including Cek1p, Cph1p, Tpk2p, and Efg1p, suggesting a specific Pmt6p target protein upstream of these components. Mutants lacking bothPMT1 and PMT6 are viable and showpmt1 mutant phenotypes and an additional sensitivity to the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The lack of Pmt6p significantly reduces adherence to endothelial cells and overall virulence in a mouse model of systemic infection. The results suggest that Pmt6p regulates a more narrow subclass of proteins in C. albicans than Pmt1p, including secreted proteins responsible for morphogenesis and antifungal sensitivities.


Sign in / Sign up

Export Citation Format

Share Document