scholarly journals Exogenous Administration of Gangliosides Displaces GPI-anchored Proteins from Lipid Microdomains in Living Cells

1999 ◽  
Vol 10 (10) ◽  
pp. 3187-3196 ◽  
Author(s):  
Mikael Simons ◽  
Tim Friedrichson ◽  
Jörg B. Schulz ◽  
Marina Pitto ◽  
Massimo Masserini ◽  
...  

Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid–cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4°C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid–cholesterol microdomains in living cells.

2012 ◽  
Vol 303 (9) ◽  
pp. F1325-F1332 ◽  
Author(s):  
Hua Su ◽  
Conner B. Carter ◽  
Oskar Laur ◽  
Jeff M. Sands ◽  
Guangping Chen

The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation.


1997 ◽  
Vol 110 (11) ◽  
pp. 1307-1316 ◽  
Author(s):  
A. Eger ◽  
A. Stockinger ◽  
G. Wiche ◽  
R. Foisner

The intermediate filament-binding protein plectin and cytokeratin were localised at the cellular periphery of fully polarised Madin-Darby canine kidney (MDCK) cells, whereas vimentin was primarily found in a perinuclear network. Confocal and immunoelectron microscopy revealed that plectin was restricted to areas underlying the lateral plasma membrane. It colocalised with fodrin, a component of the submembrane skeleton, and was closely associated with desmosomal plaque structures. Biochemically, plectin was shown to interact directly with immunoprecipitated desmoplakin in vitro. Upon loss of cell polarity in low calcium medium, plectin redistributed to a cytoplasmic vimentin- and cytokeratin-related network, clearly distinct from diffusely distributed fodrin and internalised desmoplakin structures. The structural reorganisation of plectin was also reflected by an increased solubility of the protein in Triton X-100/high salt, and a decrease in its half-life from approximately 20 to approximately 5 hours. Furthermore, unlike cytokeratins and vimentin, desmoplakin and fodrin did not associate with plectin attached to magnetic beads in cell lysates of unpolarised cells, while all proteins formed a stable complex in polarised cells. Altogether, these data indicate that plectin is involved in the anchorage of intermediate filaments to desmosomes and to the submembrane skeleton in polarised MDCK cells.


1994 ◽  
Vol 5 (10) ◽  
pp. 1093-1103 ◽  
Author(s):  
A K Rajasekaran ◽  
J S Humphrey ◽  
M Wagner ◽  
G Miesenböck ◽  
A Le Bivic ◽  
...  

Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes.


1987 ◽  
Vol 105 (4) ◽  
pp. 1623-1635 ◽  
Author(s):  
G van Meer ◽  
E H Stelzer ◽  
R W Wijnaendts-van-Resandt ◽  
K Simons

To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts.


2006 ◽  
Vol 172 (7) ◽  
pp. 1023-1034 ◽  
Author(s):  
Simona Paladino ◽  
Thomas Pocard ◽  
Maria Agata Catino ◽  
Chiara Zurzolo

The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin–Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.


1990 ◽  
Vol 1 (12) ◽  
pp. 921-936 ◽  
Author(s):  
M J van Zeijl ◽  
K S Matlin

The effects of microtubule perturbation on the transport of two different viral glycoproteins were examined in infected Madin-Darby canine kidney (MDCK) cells grown on both permeable and solid substrata. Quantitative biochemical analysis showed that the microtubule-depolymerizing drug nocodazole inhibited arrival of influenza hemagglutinin on the apical plasma membrane in MDCK cells grown on both substrata. In contrast, the microtubule-stabilizing drug taxol inhibited apical appearance of hemagglutinin only when MDCK cells were grown on permeable substrata. On the basis of hemagglutinin mobility on sodium dodecyl sulfate gels and its sensitivity to endo H, it was evident that nocodazole and taxol arrested hemagglutinin at different intracellular sites. Neither drug caused a significant increase in the amount of hemagglutinin detected on the basolateral plasma membrane domain. In addition, neither drug had any noticeable effect on the transport of the vesicular stomatitis virus (VSV)-G protein to the basolateral surface. These results shed light on previous conflicting reports using this model system and support the hypothesis that microtubules play a role in the delivery of membrane glycoproteins to the apical, but not the basolateral, domain of epithelial cells.


2003 ◽  
Vol 23 (7) ◽  
pp. 2600-2607 ◽  
Author(s):  
Ying Luo ◽  
Peter M. Vassilev ◽  
Xiaogang Li ◽  
Yoshifumi Kawanabe ◽  
Jing Zhou

ABSTRACT Mutations in polycystin 2 (PC2), a Ca2+-permeable cation channel, cause autosomal dominant polycystic kidney disease. Whether PC2 functions in the endoplasmic reticulum (ER) or in the plasma membrane has been controversial. Here we generated and characterized a polyclonal antibody against PC2, determined the subcellular localization of both endogenous and transfected PC2 by immunohistochemistry and biotinylation of cell surface proteins, and assessed PC2 channel properties with electrophysiology. Endogenous PC2 was found in the plasma membrane and the primary cilium of mouse inner medullar collecting duct (IMCD) cells and Madin-Darby canine kidney (MDCK) cells, whereas heterologously expressed PC2 showed a predominant ER localization. Patch-clamping of IMCD cells expressing endogenous or heterologous PC2 confirmed the presence of the channel on the plasma membrane. Treatment with chaperone-like factors facilitated the translocation of the PC2 channel to the plasma membrane from intracellular pools. The unitary conductances, channel kinetics, and other characteristics of both endogenously and heterologously expressed PC2 were similar to those described in our previous study in Xenopus laevis oocytes. These results show that PC2 functions as a plasma membrane channel in renal epithelia and suggest that PC2 contributes to Ca2+ entry and transport of other cations in defined nephron segments in vivo.


2008 ◽  
Vol 8 (3) ◽  
pp. 409-420 ◽  
Author(s):  
Haizhen Zhang ◽  
Xiaoting Tang ◽  
Gerhard R. Munske ◽  
Nikola Tolic ◽  
Gordon A. Anderson ◽  
...  

1990 ◽  
Vol 110 (2) ◽  
pp. 349-357 ◽  
Author(s):  
W J Nelson ◽  
E M Shore ◽  
A Z Wang ◽  
R W Hammerton

Cell-cell contact is an important determinant in the formation of functionally distinct plasma membrane domains during the development of epithelial cell polarity. In cultures of Madin-Darby canine kidney (MDCK) epithelial cells, cell-cell contact induces the assembly and accumulation of the Na+,K+-ATPase and elements of the membrane-cytoskeleton (ankyrin and fodrin) at the regions of cell-cell contact. Epithelial cell-cell contact appears to be regulated by the cell adhesion molecule uvomorulin (E-cadherin) which also becomes localized at the lateral plasma membrane of polarized cells. We have sought to determine whether the colocalization of these proteins reflects direct molecular interactions which may play roles in coordinating cell-cell contact and the assembly of the basal-lateral domain of the plasma membrane. Recently, we identified a complex of proteins containing the Na+,K+-ATPase, ankyrin, and fodrin in extracts of whole MDCK cells (Nelson, W.J., and R. W. Hammerton. 1989. J. Cell Biol. 108:893-902). We have now examined cell extracts for protein complexes containing the cell adhesion molecule uvomorulin. Proteins were solubilized from whole MDCK cells and fractionated in sucrose gradients. The sedimentation profile of solubilized uvomorulin is well separated from the majority of cell surface proteins, suggesting that uvomorulin occurs in a protein complex. A distinct portion of uvomorulin (30%) cosediments with ankyrin and fodrin (approximately 10.5S). Further fractionation of cosedimenting proteins in nondenaturing polyacrylamide gels reveals a discrete band of proteins that binds antibodies specific for uvomorulin, Na+,K+-ATPase, ankyrin, and fodrin. Significantly, ankyrin and fodrin, but not Na+K+-ATPase, coimmunoprecipitate in a complex with uvomorulin using uvomorulin antibodies. This result indicates that separate complexes exist containing ankyrin and fodrin with either uvomorulin or Na+,K+-ATPase. These results are discussed in the context of the possible roles of uvomorulin-induced cell-cell contact in the assembly of the membrane-cytoskeleton and associated membrane proteins (e.g., Na+,K+-ATPase) at the contact zone and in the development of cell polarity.


2020 ◽  
Author(s):  
Nick R. Elston ◽  
Michael Pablo ◽  
Fred Pimenta ◽  
Klaus M. Hahn ◽  
Takashi Watanabe

The small GTPases Rac1 and Rap1 can fulfill multiple cellular functions because their activation kinetics and localization are precisely controlled. To probe the role of their spatiotemporal dynamics, we generated optogenetic tools that activate or inhibit endogenous Rac and Rap1 in living cells. An improved version of the light induced dimerization (iLID) system [1] was used to control plasma membrane localization of protein domains that specifically activate or inactivate Rap1 and Rac (Tiam1 and Chimerin for Rac, RasGRP2 and Rap1GAP for Rap1 [2, 3, 4, 5]). Irradiation yielded a 50% to 230% increase in the concentration of these domains at the membrane, leading to effects on cell morphodynamics consistent with the known roles of Rac1 and Rap1.


Sign in / Sign up

Export Citation Format

Share Document