scholarly journals Mitochondrial AKAP121 Binds and Targets Protein Tyrosine Phosphatase D1, a Novel Positive Regulator of src Signaling

2004 ◽  
Vol 24 (11) ◽  
pp. 4613-4626 ◽  
Author(s):  
Luca Cardone ◽  
Annalisa Carlucci ◽  
Adele Affaitati ◽  
Alessandra Livigni ◽  
Tiziana deCristofaro ◽  
...  

ABSTRACT A-kinase anchor protein 121 (AKAP121) and its spliced isoform AKAP84 anchor protein kinase A (PKA) to the outer membrane of mitochondria, focusing and enhancing cyclic AMP signal transduction to the organelle. We find that AKAP121/84 also binds PTPD1, a src-associated protein tyrosine phosphatase. A signaling complex containing AKAP121, PKA, PTPD1, and src is assembled in vivo. PTPD1 activates src tyrosine kinase and increases the magnitude and duration of epidermal growth factor (EGF) signaling. EGF receptor phosphorylation and downstream activation of ERK 1/2 and Elk1-dependent gene transcription are enhanced by PTPD1. Expression of a PTPD1 mutant lacking catalytic activity inhibits src and downregulates ERK 1/2 but does not affect the activity of c-Jun N-terminal kinase 1/2 and p38α mitogen-activated protein kinase. AKAP121 binds to and redistributes PTPD1 from the cytoplasm to mitochondria and inhibits EGF signaling. Our findings indicate that PTPD1 is a novel positive regulator of src signaling and a key component of the EGF transduction pathway. By binding and/or targeting the phosphatase on mitochondria, AKAP121 modulates the amplitude and persistence of src-dependent EGF transduction pathway. This represents the first example of physical and functional interaction between AKAPs and a protein tyrosine phosphatase.

2001 ◽  
Vol 170 (2) ◽  
pp. 403-411 ◽  
Author(s):  
FC Maciel ◽  
C Poderoso ◽  
A Gorostizaga ◽  
C Paz ◽  
EJ Podesta

Our recent reports indicate that protein tyrosine phosphorylation is an obligatory component of the mechanism of action of ACTH in its stimulatory action of corticosteroid production in adrenal zona fasciculata (ZF). The role of protein tyrosine phosphatase (PTP) activity in the regulation of steroidogenesis by LH/chorionic gonadotropin (CG) was tested using cell-permeable PTP inhibitors. Thus, PTP inhibition blocks LH- and 8-bromo-cAMP-stimulated testosterone production by Leydig cells without affecting 22(R)OH-cholesterol-supported steroidogenesis, similar results to those obtained in the adrenal ZF/ACTH system, leading us to propose that PTP action is an obligatory and common step in the cascade triggered by both hormones. Then, we continued the study testing whether LH modulates PTP activity in MA-10 cells, a Leydig cell line. In this regard, we observed by an in-gel PTP assay two PTPs of 110 and 50 kDa that are activated by hormone and 8-bromo-cAMP activation of the cells. Moreover, there is a transient increase by the second messenger in total PTP activity that correlates with the higher activity displayed by the 110 and 50 kDa proteins in the in-gel assay. In accordance with these results, analysis of tyrosine phosphorylated proteins showed the LH-induced dephosphorylation of proteins of 120, 68 and 50 kDa. The results of this study indicate that PTPs play an important role in the regulation of Leydig cell functions and that there exists a cross talk between serine/threonine phosphorylation and tyrosine dephosphorylation mediated by hormone-activated cAMP-dependent protein kinase and PTPs. These results are the first evidence of PTP having a role in LH/CG-stimulated steroidogenesis.


2002 ◽  
Vol 65 (4) ◽  
pp. 1823-1833 ◽  
Author(s):  
Karen J. Martell ◽  
Audrey F. Seasholtz ◽  
Seung P. Kwak ◽  
Kristina K. Clemens ◽  
Jack E. Dixon

Sign in / Sign up

Export Citation Format

Share Document