scholarly journals Drosophila Nipped-B Protein Supports Sister Chromatid Cohesion and Opposes the Stromalin/Scc3 Cohesion Factor To Facilitate Long-Range Activation of the cut Gene

2004 ◽  
Vol 24 (8) ◽  
pp. 3100-3111 ◽  
Author(s):  
Robert A. Rollins ◽  
Maria Korom ◽  
Nathalie Aulner ◽  
Andrew Martens ◽  
Dale Dorsett

ABSTRACT The Drosophila melanogaster Nipped-B protein facilitates transcriptional activation of the cut and Ultrabithorax genes by remote enhancers. Sequence homologues of Nipped-B, Scc2 of Saccharomyces cerevisiae, and Mis4 of Schizosaccharomyces pombe are required for sister chromatid cohesion during mitosis. The evolutionarily conserved Cohesin protein complex mediates sister chromatid cohesion, and Scc2 and Mis4 are needed for Cohesin to associate with chromosomes. Here, we show that Nipped-B is also required for sister chromatid cohesion but that, opposite to the effect of Nipped-B, the stromalin/Scc3 component of Cohesin inhibits long-range activation of cut. To explain these findings, we propose a model based on the chromatin domain boundary activities of Cohesin in which Nipped-B facilitates cut activation by alleviating Cohesin-mediated blocking of enhancer-promoter communication.

2010 ◽  
Vol 188 (3) ◽  
pp. 335-349 ◽  
Author(s):  
Rihui Yan ◽  
Sharon E. Thomas ◽  
Jui-He Tsai ◽  
Yukihiro Yamada ◽  
Bruce D. McKee

Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.


2018 ◽  
Author(s):  
Haitao Sun ◽  
Jiaxin Zhang ◽  
Jingjing Zhang ◽  
Zhen Li ◽  
Qinhong Cao ◽  
...  

AbstractCohesin acetyltransferases Esco1 and Esco2 play a vital role in establishing sister chromatid cohesion. How Esco1 and Esco2 are controlled to achieve this in a DNA replication-coupled manner remains unclear in higher eukaryotes. Here we show that Cul4-RING ligases (CRL4s) play a critical role in sister chromatid cohesion in human cells. Depletion of Cul4A, Cul4B or Ddb1 subunits substantially reduces normal cohesion efficiency. We also show that Mms22L, a vertebrate ortholog of yeast Mms22, is one of Ddb1 and Cul4-associated factors (DCAFs) involved in cohesion. Several lines of evidence suggest a selective interaction of CRL4s with Esco2, but not Esco1. Depletion of either CRL4s or Esco2 causes a defect in Smc3 acetylation which can be rescued by HDAC8 inhibition. More importantly, both CRL4s and PCNA act as mediators for efficiently stabilizing Esco2 on chromatin and catalyzing Smc3 acetylation. Taken together, we propose an evolutionarily conserved mechanism in which CRL4s and PCNA regulate Esco2-dependent establishment of sister chromatid cohesion.Author summaryWe identified human Mms22L as a substrate specific adaptor of Cul4-Ddb1 E3 ubiquitin ligase. Downregulation of Cul4A, Cul4B or Ddb1 subunit causes reduction of acetylated Smc3, via interaction with Esco2 acetyltransferase, and then impairs sister chromatid cohesion in 293T cells. We found functional complementation between Cul4-Ddb1-Mms22L E3 ligase and Esco2 in Smc3 acetylation and sister chromatid cohesion. Interestingly, both Cul4-Ddb1 E3 ubiquitin ligase and PCNA contribute to Esco2 mediated Smc3 acetylation. To summarise, we demonstrated an evolutionarily conserved mechanism in which Cul4-Ddb1 E3 ubiquitin ligases and PCNA regulate Esco2-dependent establishment of sister chromatid cohesion.


2003 ◽  
Vol 23 (8) ◽  
pp. 2733-2748 ◽  
Author(s):  
Shaune Edwards ◽  
Caroline M. Li ◽  
Daniel L. Levy ◽  
Jessica Brown ◽  
Peter M. Snow ◽  
...  

ABSTRACT The large subunit of Saccharomyces cerevisiae DNA polymerase ε, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase σ (Pol σ), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol σ stimulates the polymerase activity of the Pol ε holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol ε, like Pol σ, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5Δ mutants, like trf4Δ mutants, are defective in DNA repair and sister chromatid cohesion.


2021 ◽  
Vol 22 (6) ◽  
pp. 2810
Author(s):  
Ana Boavida ◽  
Diana Santos ◽  
Mohammad Mahtab ◽  
Francesca M. Pisani

Several lines of evidence suggest the existence in the eukaryotic cells of a tight, yet largely unexplored, connection between DNA replication and sister chromatid cohesion. Tethering of newly duplicated chromatids is mediated by cohesin, an evolutionarily conserved hetero-tetrameric protein complex that has a ring-like structure and is believed to encircle DNA. Cohesin is loaded onto chromatin in telophase/G1 and converted into a cohesive state during the subsequent S phase, a process known as cohesion establishment. Many studies have revealed that down-regulation of a number of DNA replication factors gives rise to chromosomal cohesion defects, suggesting that they play critical roles in cohesion establishment. Conversely, loss of cohesin subunits (and/or regulators) has been found to alter DNA replication fork dynamics. A critical step of the cohesion establishment process consists in cohesin acetylation, a modification accomplished by dedicated acetyltransferases that operate at the replication forks. Defects in cohesion establishment give rise to chromosome mis-segregation and aneuploidy, phenotypes frequently observed in pre-cancerous and cancerous cells. Herein, we will review our present knowledge of the molecular mechanisms underlying the functional link between DNA replication and cohesion establishment, a phenomenon that is unique to the eukaryotic organisms.


Sign in / Sign up

Export Citation Format

Share Document