scholarly journals Posttranscriptional Regulation of HO Expression by the Mkt1-Pbp1 Complex

2004 ◽  
Vol 24 (9) ◽  
pp. 3670-3681 ◽  
Author(s):  
Tomofumi Tadauchi ◽  
Toshifumi Inada ◽  
Kunihiro Matsumoto ◽  
Kenji Irie

ABSTRACT Cells of budding yeast give rise to mother and daughter cells, which differ in that only mother cells express the HO endonuclease gene and are thereby able to switch mating types. In this study, we identified the MKT1 gene as a positive regulator of HO expression. The MKT1 gene encodes a protein with two domains, XPG-N and XPG-I, which are conserved among a family of nucleases, including human XPG endonuclease. Loss of MKT1 had little effect on HO mRNA levels but resulted in decreased protein levels. This decrease was dependent on the 3′ untranslated region of the HO transcript. We screened for proteins that associate with Mkt1 and isolated Pbp1, a protein that is known to associate with Pab1, a poly(A)-binding protein. Loss of PBP1 resembles an mkt1Δ deletion, causing decreased expression of HO at the posttranscriptional level. Mkt1 and Pbp1 cosedimented with polysomes in sucrose gradients, with Mkt1 distribution in the polysomes dependent on Pbp1, but not vice versa. These observations suggest that a complex of Mkt1 and Pbp1 regulates the translation of HO mRNA.

1994 ◽  
Vol 14 (5) ◽  
pp. 3085-3093
Author(s):  
L A Chandler ◽  
C P Ehretsmann ◽  
S Bourgeois

Although loss of cell surface fibronectin (FN) is a hallmark of many oncogenically transformed cells, the mechanisms responsible for this phenomenon remain poorly understood. The present study utilized the nontumorigenic human osteosarcoma cell line TE-85 to investigate the effects of induced Ha-ras oncogene expression on FN biosynthesis. TE-85 cells were stably transfected with metallothionein-Ha-ras fusion genes, and the effects of metal-induced ras expression on FN biosynthesis were determined. Induction of the ras oncogene, but not proto-oncogene, was accompanied by a decrease in total FN mRNA and protein levels. Transfection experiments indicated that these oncogene effects were not due to reduced FN promoter activity, suggesting that a posttranscriptional mechanism was involved. The most common mechanism of posttranscriptional regulation affects cytoplasmic mRNA stability. However, in this study the down-regulation of FN was identified as a nuclear event. A component of the ras effect was due to a mechanism affecting accumulation of processed nuclear FN RNA. Mechanisms that would generate such an effect include altered RNA processing and altered stability of the processed message in the nucleus. There was no effect of ras on FN mRNA poly(A) tail length or site of polyadenylation. There was also no evidence for altered splicing at the ED-B domain of FN mRNA. This demonstration of nuclear posttranscriptional down-regulation of FN by the Ha-ras oncogene identifies a new level at which ras oncoproteins can regulate gene expression and thus contribute to development of the malignant phenotype.


1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531 ◽  
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


2013 ◽  
Vol 24 (23) ◽  
pp. 3697-3709 ◽  
Author(s):  
Lihong Li ◽  
Shawna Miles ◽  
Zephan Melville ◽  
Amalthiya Prasad ◽  
Graham Bradley ◽  
...  

Yeast that naturally exhaust the glucose from their environment differentiate into three distinct cell types distinguishable by flow cytometry. Among these is a quiescent (Q) population, which is so named because of its uniform but readily reversed G1 arrest, its fortified cell walls, heat tolerance, and longevity. Daughter cells predominate in Q-cell populations and are the longest lived. The events that differentiate Q cells from nonquiescent (nonQ) cells are initiated within hours of the diauxic shift, when cells have scavenged all the glucose from the media. These include highly asymmetric cell divisions, which give rise to very small daughter cells. These daughters modify their cell walls by Sed1- and Ecm33-dependent and dithiothreitol-sensitive mechanisms that enhance Q-cell thermotolerance. Ssd1 speeds Q-cell wall assembly and enables mother cells to enter this state. Ssd1 and the related mRNA-binding protein Mpt5 play critical overlapping roles in Q-cell formation and longevity. These proteins deliver mRNAs to P-bodies, and at least one P-body component, Lsm1, also plays a unique role in Q-cell longevity. Cells lacking Lsm1 and Ssd1 or Mpt5 lose viability under these conditions and fail to enter the quiescent state. We conclude that posttranscriptional regulation of mRNAs plays a crucial role in the transition in and out of quiescence.


2009 ◽  
Vol 186 (4) ◽  
pp. 541-554 ◽  
Author(s):  
Andrei Fagarasanu ◽  
Fred D. Mast ◽  
Barbara Knoblach ◽  
Yui Jin ◽  
Matthew J. Brunner ◽  
...  

In Saccharomyces cerevisiae, the class V myosin motor Myo2p propels the movement of most organelles. We recently identified Inp2p as the peroxisome-specific receptor for Myo2p. In this study, we delineate the region of Myo2p devoted to binding peroxisomes. Using mutants of Myo2p specifically impaired in peroxisome binding, we dissect cell cycle–dependent and peroxisome partitioning–dependent mechanisms of Inp2p regulation. We find that although total Inp2p levels oscillate with the cell cycle, Inp2p levels on individual peroxisomes are controlled by peroxisome inheritance, as Inp2p aberrantly accumulates and decorates all peroxisomes in mother cells when peroxisome partitioning is abolished. We also find that Inp2p is a phosphoprotein whose level of phosphorylation is coupled to the cell cycle irrespective of peroxisome positioning in the cell. Our findings demonstrate that both organelle positioning and cell cycle progression control the levels of organelle-specific receptors for molecular motors to ultimately achieve an equidistribution of compartments between mother and daughter cells.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Wyndham W. Lathem ◽  
Jay A. Schroeder ◽  
Lauren E. Bellows ◽  
Jeremy T. Ritzert ◽  
Jovanka T. Koo ◽  
...  

ABSTRACTThe cyclic AMP receptor protein (Crp) is a transcriptional regulator that controls the expression of numerous bacterial genes, usually in response to environmental conditions and particularly by sensing the availability of carbon. In the plague pathogenYersinia pestis, Crp regulates the expression of multiple virulence factors, including components of the type III secretion system and the plasminogen activator protease Pla. The regulation of Crp itself, however, is distinctly different from that found in the well-studiedEscherichia colisystem. Here, we show that at physiological temperatures, the synthesis of Crp inY. pestisis positively regulated at the posttranscriptional level. The loss of the small RNA chaperone Hfq results in decreased Crp protein levels but not in steady-state Crp transcript levels, and this regulatory effect occurs within the 5′ untranslated region (UTR) of the Crp mRNA. The posttranscriptional activation of Crp synthesis is required for the expression ofpla, and decouplingcrpfrom Hfq through the use of an exogenously controlled promoter and 5′ UTR increases Pla protein levels as well as partially rescues the growth defect associated with the loss of Hfq. Finally, we show that both Hfq and the posttranscriptional regulation of Crp contribute to the virulence ofY. pestisduring pneumonic plague. The Hfq-dependent, posttranscriptional regulation of Crp may be specific toYersiniaspecies, and thus our data help explain the dramatic growth and virulence defects associated with the loss of Hfq inY. pestis.IMPORTANCEThe Crp protein is a major transcriptional regulator in bacteria, and its synthesis is tightly controlled to avoid inappropriate induction of the Crp regulon. In this report, we provide the first evidence of Crp regulation in an Hfq-dependent manner at the posttranscriptional level. Our discovery that the synthesis of Crp inYersinia pestisis Hfq dependent adds an additional layer of regulation to catabolite repression in this bacterium. Our work provides a mechanism by which the plague pathogen links not just the sensing of glucose or other carbon sources but also other signals that influence Crp abundance via the expression of small RNAs to the induction of the Crp regulon. In turn, this allowsY. pestisto fine-tune Crp levels to optimize virulence gene expression during plague infection and may allow the bacterium to adapt to its unique environmental niches.


2020 ◽  
Author(s):  
Shan Cao ◽  
Lan Xiao ◽  
Junyao Wang ◽  
Guodong Chen ◽  
Yulan Liu

The integrity of the intestinal mucosal barrier protects hosts against pathological conditions. Early mucosal restitution after wounding refers to epithelial cell migration into a defect. The RNA-binding protein HuR plays an important role in the posttranscriptional regulation of gene expression and is involved in many aspects of cellular physiology. In the present study, we investigated the role of HuR in the regulation of cell migration through the posttranscriptional regulation of Caveolin-1 (Cav-1). Online software was used to identify Cav-1 mRNA as a potential target of HuR. The interaction of HuR with Cav-1 mRNA was investigated via ribonucleoprotein immunoprecipitation (RNP IP) assays and biotin pulldown analysis. HuR was found to bind specifically to the Cav-1 3’-UTR rather than the coding region or 5’-UTR. Transfection of cells with siHuR decreased both HuR protein levels and Cav-1 protein levels; conversely, ectopic overexpression of HuR via infection of cells with an adenoviral vector containing HuR cDNA (AdHuR) increased Cav-1 protein levels without disturbing Cav-1 mRNA levels. Thus, HuR enhanced Cav-1 expression in vitro by stimulating Cav-1 translation. Intestinal epithelium–specific HuR knockout in mice decreased Cav-1 protein levels without changing Cav-1 mRNA levels, consistent with the in vitro results. Decreasing the levels of HuR via siHuR transfection inhibited early epithelial repair, but this effect was reversed by ectopic overexpression of GFP-tagged Cav-1. These results indicate that posttranscriptional regulation of Cav-1 gene expression by HuR plays a critical role in the regulation of rapid epithelial repair after wounding.


2021 ◽  
Author(s):  
Kari H. Ecklund ◽  
Megan E. Bailey ◽  
Carsten K. Dietvorst ◽  
Charles L. Asbury ◽  
Steven M. Markus

ABSTRACTDynein motors move the mitotic spindle to the cell division plane in many cell types, including in budding yeast, in which dynein is assisted by numerous factors including the microtubule-associated protein (MAP) She1. Evidence suggests that She1 plays a role in polarizing dynein-mediated spindle movements toward the daughter cell; however, how She1 performs this function is unknown. We find that She1 assists dynein in maintaining the spindle close to the bud neck, such that at anaphase onset the chromosomes are segregated to mother and daughter cells. She1 does so by attenuating the initiation of dynein-mediated spindle movements specifically within the mother cell, ensuring such movements are polarized toward the daughter cell. Our data indicate that this activity relies on She1 binding to the microtubule-bound conformation of the dynein microtubule-binding domain, and to astral microtubules within mother cells. Our findings reveal how an asymmetrically localized MAP directionally tunes dynein activity by attenuating motor activity in a spatially confined manner.


1995 ◽  
Vol 269 (6) ◽  
pp. G961-G973 ◽  
Author(s):  
B. T. Kren ◽  
C. M. Rodrigues ◽  
K. D. Setchell ◽  
C. J. Steer

We investigated the effects of bile acid feeding on the mRNA levels and transcriptional activity of genes involved in various facets of hepatic cell function. Rats were maintained for 10 days on standard diet supplemented with combinations of 1 and 0.4% deoxycholic acid and ursodeoxycholic acid. Significant reductions in mRNA levels for liver fatty acid binding protein, albumin, the asialoglycoprotein receptor, connexins 32 and 26, and cytochromes P-450IIB1 and P-450IIE1 were associated with 1% deoxycholic acid feeding. Conversely, the 1% deoxycholic acid-fed animals exhibited increased mRNA levels for cholesterol 7 alpha-hydroxylase, 3-hydroxy-3-methylglutaryl-CoA reductase, multidrug resistance, procollagens, extracellular matrix, protooncogenes, tumor suppressors, and cyclins. The 0.4% deoxycholic acid-fed animals exhibited increased mRNA levels for c-jun, H-ras, p53, cyclins D1 and D3, fibronectin, and procollagens alpha 1(I) and alpha 1(III). Transcriptional rate changes could not account for the observed changes in steady-state mRNA levels. Ursodeoxycholic acid feeding had no significant effect on gene expression and almost completely inhibited the changes associated with 1% deoxycholic acid when coadministered. The results indicate that dietary ingestion of deoxycholic acid profoundly affects hepatic gene expression in the rat, and regulation occurs primarily at the posttranscriptional level.


2004 ◽  
Vol 15 (11) ◽  
pp. 5145-5157 ◽  
Author(s):  
Pil Jung Kang ◽  
Elizabeth Angerman ◽  
Kenichi Nakashima ◽  
John R. Pringle ◽  
Hay-Oak Park

In the budding yeast Saccharomyces cerevisiae, selection of the bud site determines the axis of polarized cell growth and eventual oriented cell division. Bud sites are selected in specific patterns depending on cell type. These patterns appear to depend on distinct types of marker proteins in the cell cortex; in particular, the bipolar budding of diploid cells depends on persistent landmarks at the birth-scar-distal and -proximal poles that involve the proteins Bud8p and Bud9p, respectively. Rax1p and Rax2p also appear to function specifically in bipolar budding, and we report here a further characterization of these proteins and of their interactions with Bud8p and Bud9p. Rax1p and Rax2p both appear to be integral membrane proteins. Although commonly used programs predict different topologies for Rax2p, glycosylation studies indicate that it has a type I orientation, with its long N-terminal domain in the extracytoplasmic space. Analysis of rax1 and rax2 mutant budding patterns indicates that both proteins are involved in selecting bud sites at both the distal and proximal poles of daughter cells as well as near previously used division sites on mother cells. Consistent with this, GFP-tagged Rax1p and Rax2p were both observed at the distal pole as well as at the division site on both mother and daughter cells; localization to the division sites was persistent through multiple cell cycles. Localization of Rax1p and Rax2p was interdependent, and biochemical studies showed that these proteins could be copurified from yeast. Bud8p and Bud9p could also be copurified with Rax1p, and localization studies provided further evidence of interactions. Localization of Rax1p and Rax2p to the bud tip and distal pole depended on Bud8p, and normal localization of Bud8p was partially dependent on Rax1p and Rax2p. Although localization of Rax1p and Rax2p to the division site did not appear to depend on Bud9p, normal localization of Bud9p appeared largely or entirely dependent on Rax1p and Rax2p. Taken together, the results indicate that Rax1p and Rax2p interact closely with each other and with Bud8p and Bud9p in the establishment and/or maintenance of the cortical landmarks for bipolar budding.


2015 ◽  
Vol 112 (38) ◽  
pp. 11977-11982 ◽  
Author(s):  
Jing Yang ◽  
Mark A. McCormick ◽  
Jiashun Zheng ◽  
Zhengwei Xie ◽  
Mitsuhiro Tsuchiya ◽  
...  

Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.


Sign in / Sign up

Export Citation Format

Share Document