scholarly journals Disruption of Mechanisms That Prevent Rereplication Triggers a DNA Damage Response

2005 ◽  
Vol 25 (15) ◽  
pp. 6707-6721 ◽  
Author(s):  
Vincent Archambault ◽  
Amy E. Ikui ◽  
Benjamin J. Drapkin ◽  
Frederick R. Cross

ABSTRACT Eukaryotes replicate DNA once and only once per cell cycle due to multiple, partially overlapping mechanisms efficiently preventing reinitiation. The consequences of reinitiation are unknown. Here we show that the induction of rereplication by mutations in components of the prereplicative complex (origin recognition complex [ORC], Cdc6, and minichromosome maintenance proteins) causes a cell cycle arrest with activated Rad53, a large-budded morphology, and an undivided nucleus. Combining a mutation disrupting the Clb5-Orc6 interaction (ORC6-rxl) and a mutation stabilizing Cdc6 (CDC6ΔNT) causes a cell cycle delay with a similar phenotype, although this background is only partially compromised for rereplication control and does not exhibit overreplication detectable by fluorescence-activated cell sorting. We conducted a systematic screen that identified genetic requirements for the viability of these cells. ORC6-rxl CDC6ΔNT cells depend heavily on genes required for the DNA damage response and for double-strand-break repair by homologous recombination. Our results implicate an Mre11-Mec1-dependent pathway in limiting the extent of rereplication.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1265-1265
Author(s):  
Christine von Klitzing ◽  
Florian Bassermann ◽  
Stephan W. Morris ◽  
Christian Peschel ◽  
Justus Duyster

Abstract The nuclear interaction partner of ALK (NIPA) is a nuclear protein identified by our group in a screen for NPM-ALK interaction partners. We recently reported that NIPA is an F-box protein that assembles with SKP1, Cul1 and Roc1 to establish a novel SCF-type E3 ubiquitin ligase. The formation of the SCFNIPA complex is regulated by cell cycle-dependent phosphorylation of NIPA that restricts SCFNIPA assembly from G1- to late S-phase, thus allowing its substrates to be active from late S-phase throughout mitosis. Proteins involved in cell cycle regulation frequently play a role in DNA damage checkpoints. We therefore sought to determine whether NIPA has a function in the cellular response to genotoxic stress. For this reason we treated NIH/3T3 cells with various DNA-damaging agents. Surprisingly, we observed phosphorylation of NIPA in response to some of these agents, including UV radiation. This phosphorylation was cell cycle phase independent and thus independent of the physiological cell cycle dependent phosphorylation of NIPA. The relevant phosphorylation site is identical to the respective site in the course of cell cycle-dependent phosphorylation of NIPA. Thus, phosphorylation of NIPA upon genotoxic stress would inactivate the SCFNIPA complex in a cell cycle independent manner. Interestingly, this phosphorylation site lies within a consensus site of the Chk1/Chk2 checkpoint kinases. These kinases are central to DNA damage checkpoint signaling. Chk1 is activated by ATR in response to blocked replication forks as they occur after treatment with UV. We performed experiments using the ATM/ATR inhibitor caffeine and the Chk1 inhibitor SB218078 to investigate a potential role of Chk1 in NIPA phosphorylation. Indeed, we found both inhibitors to prevent UV-induced phosphorylation of NIPA. Current experiments applying Chk1 knock-out cells will unravel the role of Chk1 in NIPA phosphorylation. Additional experiments were performed to investigate a function for NIPA in DNA-damage induced apoptosis. In this regard, we observed overexpression of NIPA WT to induce apoptosis in response to UV, whereas no proapoptotic effect was seen with the phosphorylation deficient NIPA mutant. Therefore, the phosphorylated form of NIPA may be involved in apoptotic signaling pathways. In summary, we present data suggesting a cell cycle independent function for NIPA. This activity is involved in DNA damage response and may be involved in regulating apoptosis upon genotoxic stress.


2009 ◽  
Vol 37 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Stephen P. Jackson

The DNA of all cells is continually under assault from a wide range of DNA-damaging agents. To counter this threat to their genetic integrity, cells possess systems, collectively known as the DDR (DNA-damage response), to detect DNA damage, signal its presence and mediate its repair. In the present article, I provide an overview of the DDR and then describe how work in my laboratory and elsewhere has identified some of the key protein players that mediate cellular responses to the most cytotoxic form of DNA damage: the DNA DSB (double-strand break). I also discuss some of my laboratory's recent work, which has revealed that the way cells respond to DSBs is modulated in a cell-cycle-dependent manner to ensure that the cell uses the DSB repair system that is most suited to its cell-cycle stage. Finally, I explain how our increasing knowledge of the DDR is suggesting new avenues for treating cancer and provide an example of a DDR-inhibitory drug that is showing promise in clinical trials.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5157-5157
Author(s):  
Choon Kee Lee ◽  
Shuiliang Wang ◽  
Xiaoping Huang ◽  
John Ryder ◽  
Peter Ordentlich ◽  
...  

Abstract One of the main mechanisms of action of HDAC inhibitors is the transcriptional reactivation of dormant tumor-suppressor genes through acetylation of histones, thereby inducing apoptosis. Treatment with HDACI has also been shown to induce chromatin destabilization in a transcription independent way. In the current study, we sought to determine whether HDAC inhibition induces DNA damage and amplifies alkylator-induced mitotic cell death in both melphalan sensitive- and resistant-MM cell lines (RPMI8226, 8226/LR5). The IC50 values of SNDX275, a class I HDACI agent, and melphalan on the 72-hour MTT assay were 268.05 nM and 245.94 nM in the RPMI8226, and 309.91 nM and 8657.46 nM in the 8226/LR5, respectively. When combined together at clinically attainable concentrations, the combination index by the Chou-Talalay method ranged from 0.27 to 0.75 for the RPMI8226 and from 0.33 to 0.7 for the 8226/LR5, indicating a powerful synergism. For elucidation of molecular mechanisms, MM1S and RPMI8226 cell lines were investigated for apoptosis, histone acetylation, cell cycle analysis, DNA double strand break and DNA damage response serially in 48-hour culture with SNDX-275 at 500 nM and melphalan at 10 μM, alone and in combination. Cleavage of PARP was seen following treatment with each SNDX275 and melphalan, but was highest at 48 hours with the combination of both. Apoptosis was associated with cleavage of caspases of 8, 3 and 9, which was most intense on combination. Melphalan amplified SNDX275-induced acetylation of H3. In cell cycle analysis by flow cytometry, SNDX275 caused an increase in G0-G1 and a decrease in S and G2-M. Cyclin D1, E2F-1 and p53 on western blot were not affected but expression of p21 increased. Melphalan arrested the cell cycle at G2, increased expression of p53 in the RPMI8226 and of p21 in the MM1S. The combination intensified the increase in p21 in both cell lines and in p53 only in the RPMI8226. Phosphorylation of H2AX, a marker of DNA double strand break, increased in a time dependent manner following each drug, along with an increase in phosphorylation of CHK1 and CHK2, indicative of initiation of DNA damage response. The increase in γH2AX and pCHK1 & 2, however, was considerably higher on combination than each drug alone. Furthermore, morphologic assessment of dead cells by the 48 hours of culture revealed a significant increase in mitotic catastrophe on combination in the MM1S: 0% on SNDX275 alone; 10% on melphalan alone; 43.4% on combination. The current study suggests that HDAC inhibition synergizes with melphalan in MM cells and that intensification of DNA damage is one of the mechanisms. Further studies are necessary to understand the role of HDAC inhibition for induction of mitotic catastrophe.


2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


2013 ◽  
Vol 33 (16) ◽  
pp. 3286-3298 ◽  
Author(s):  
Zhongqi Ge ◽  
Devi Nair ◽  
Xiaoyan Guan ◽  
Neha Rastogi ◽  
Michael A. Freitas ◽  
...  

The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.


Sign in / Sign up

Export Citation Format

Share Document