Moderate-level gene amplification in methotrexate-resistant Chinese hamster ovary cells is accompanied by chromosomal translocations at or near the site of the amplified DHFR gene

1984 ◽  
Vol 4 (1) ◽  
pp. 69-76
Author(s):  
W F Flintoff ◽  
E Livingston ◽  
C Duff ◽  
R G Worton

In previous studies, we have described several classes of methotrexate-resistant Chinese hamster ovary cell lines. Although the RI class is resistant because of an altered target enzyme, dihydrofolate reductase, the RIII class derived from RI cells is somewhat more resistant because of a moderate amplification of the altered dhfr structural gene (Flintoff et al., Mol. Cell. Biol. 2:275-285, 1982). In one RIII line, a translocation between the short arm (p) of chromosome 2 and the long arm (q) of chromosome 5 was observed, and the amplified RIII gene complex was mapped to the p arm of the 2p-marker chromosome derived from the translocation (Worton et al., Mol. Cell. Biol. 1:330-335, 1981). We tested the hypothesis that chromosomal translocation is a general feature of RIII cells and that such translocation involves a site at or near the dhfr structural gene. Thus, we examined four independently derived RIII-type mutants and found that each had a moderate amplification of the dhfr gene sequences, and karyotype analysis revealed that each carried a translocation involving the 2p arm at or near band 2p25. That this chromosomal rearrangement involves a site near the dhfr locus was demonstrated by mapping the altered but unamplified structural gene coding for the RI phenotype to the short arm of an unaltered chromosome 2. This suggests that a highly specific rearrangement involving an exchange at or near the site of the unamplified gene is a necessary prerequisite for the amplification process. A model for gene amplification involving chromosomal rearrangements and sister chromatid exchange is described.

1984 ◽  
Vol 4 (1) ◽  
pp. 69-76 ◽  
Author(s):  
W F Flintoff ◽  
E Livingston ◽  
C Duff ◽  
R G Worton

In previous studies, we have described several classes of methotrexate-resistant Chinese hamster ovary cell lines. Although the RI class is resistant because of an altered target enzyme, dihydrofolate reductase, the RIII class derived from RI cells is somewhat more resistant because of a moderate amplification of the altered dhfr structural gene (Flintoff et al., Mol. Cell. Biol. 2:275-285, 1982). In one RIII line, a translocation between the short arm (p) of chromosome 2 and the long arm (q) of chromosome 5 was observed, and the amplified RIII gene complex was mapped to the p arm of the 2p-marker chromosome derived from the translocation (Worton et al., Mol. Cell. Biol. 1:330-335, 1981). We tested the hypothesis that chromosomal translocation is a general feature of RIII cells and that such translocation involves a site at or near the dhfr structural gene. Thus, we examined four independently derived RIII-type mutants and found that each had a moderate amplification of the dhfr gene sequences, and karyotype analysis revealed that each carried a translocation involving the 2p arm at or near band 2p25. That this chromosomal rearrangement involves a site near the dhfr locus was demonstrated by mapping the altered but unamplified structural gene coding for the RI phenotype to the short arm of an unaltered chromosome 2. This suggests that a highly specific rearrangement involving an exchange at or near the site of the unamplified gene is a necessary prerequisite for the amplification process. A model for gene amplification involving chromosomal rearrangements and sister chromatid exchange is described.


1982 ◽  
Vol 2 (3) ◽  
pp. 250-257 ◽  
Author(s):  
J A Tischfield ◽  
J J Trill ◽  
Y I Lee ◽  
K Coy ◽  
M W Taylor

Resistance to adenine analogs such as 2,6-diaminopurine occurs at a rate of approximately 10(-3) per cell per generation in mouse L cells. This resistance is associated with a loss of detectable adenine phosphoribosyltransferase activity. Other genetic loci in L cells have the expected mutation frequency (approximately 10(-6)). Transformation of L cell mutants with Chinese hamster ovary cell DNA results in transformants with adenine phosphoribosyltransferase activity characteristic of Chinese hamster ovary cells. No activation of the mouse gene occurs on hybridization with human fibroblasts. That this high frequency event is the result of mutation rather than an epigenetic event is supported by antigenic and reversion studies of the 2,6-diaminopurine-resistant clones. These results are consistent with either a mutational hot-spot, a locus specific mutator gene, or a site of integration of an insertion sequence.


1982 ◽  
Vol 2 (3) ◽  
pp. 250-257
Author(s):  
J A Tischfield ◽  
J J Trill ◽  
Y I Lee ◽  
K Coy ◽  
M W Taylor

Resistance to adenine analogs such as 2,6-diaminopurine occurs at a rate of approximately 10(-3) per cell per generation in mouse L cells. This resistance is associated with a loss of detectable adenine phosphoribosyltransferase activity. Other genetic loci in L cells have the expected mutation frequency (approximately 10(-6)). Transformation of L cell mutants with Chinese hamster ovary cell DNA results in transformants with adenine phosphoribosyltransferase activity characteristic of Chinese hamster ovary cells. No activation of the mouse gene occurs on hybridization with human fibroblasts. That this high frequency event is the result of mutation rather than an epigenetic event is supported by antigenic and reversion studies of the 2,6-diaminopurine-resistant clones. These results are consistent with either a mutational hot-spot, a locus specific mutator gene, or a site of integration of an insertion sequence.


2002 ◽  
Vol 13 (1) ◽  
pp. 96-109 ◽  
Author(s):  
Sharron X. Lin ◽  
Gregg G. Gundersen ◽  
Frederick R. Maxfield

A significant fraction of internalized transferrin (Tf) concentrates in the endocytic recycling compartment (ERC), which is near the microtubule-organizing center in many cell types. Tf then recycles back to the cell surface. The mechanisms controlling the localization, morphology, and function of the ERC are not fully understood. We examined the relationship of Tf trafficking with microtubules (MTs), specifically the subset of stable, detyrosinated Glu MTs. We found some correlation between the level of stable Glu MTs and the distribution of the ERC; in cells with low levels of Glu MTs concentrated near to the centriole, the ERC was often tightly clustered, whereas in cells with higher levels of Glu MTs throughout the cell, the ERC was more dispersed. The clustered ERC in Chinese hamster ovary cells became dispersed when the level of Glu MTs was increased with taxol treatment. Furthermore, in a temperature-sensitive Chinese hamster ovary cell line (B104-5), the cells had more Glu MTs when the ERC became dispersed at elevated temperature. Microinjecting purified anti-Glu tubulin antibody into B104-5 cells at elevated temperature induced the redistribution of the ERC to a tight cluster. Microinjection of anti-Glu tubulin antibody slowed recycling of Tf to the cell surface without affecting Tf internalization or delivery to the ERC. Similar inhibition of Tf recycling was caused by microinjecting anti-kinesin antibody. These results suggest that stable Glu MTs and kinesin play a role in the organization of the ERC and in facilitating movement of vesicles from the ERC to the cell surface.


1989 ◽  
Vol 9 (4) ◽  
pp. 1754-1758
Author(s):  
T M Underhill ◽  
W F Flintoff

A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from either wild-type Chinese hamster ovary or human G2 cells. Primary and secondary transfectants regained the ability to take up methotrexate in a manner similar to that of wild-type cells, and in the case of those transfected with human DNA, to contain human-specific DNA sequences. The complementation by DNA-mediated gene transfer of this methotrexate-resistant phenotype provides a basis for the cloning of a gene involved in methotrexate uptake.


1989 ◽  
Vol 9 (11) ◽  
pp. 4799-4806
Author(s):  
P Reddy ◽  
M Krieger

ldlC cells are low-density lipoprotein (LDL) receptor-deficient Chinese hamster ovary cell mutants which express pleiotropic defects in Golgi-associated glycosylation reactions. The dramatically reduced stability of the abnormally glycosylated LDL receptors in ldlC cells was shown to be due, in part, to rapid proteolysis and release of a large extracellular fragment of the receptor into the medium. A set of spontaneously arising LDL receptor-positive revertants of ldlC cells has been isolated. One of these, RevC-13, exhibits the glycosylation defects characteristic of the original ldlC mutant, suggesting that restoration of receptor activity was due to extragenic suppression. This suppression was due to a dramatic increase in the rate of LDL receptor synthesis rather than to an increase in the stability of the abnormally glycosylated receptors. Increased receptor synthesis was not due to receptor gene amplification. The increased LDL receptor activity was subject to normal sterol regulation. Analysis of the RevC-13 extragenic suppressor activity in a series of hybrid cells showed that RevC-13 suppression was a codominant trait that acted in cis to the LDL receptor structural gene (ldlA). Thus, the extragenic suppression in RevC-13 cells has defined a genetic element which is either part of or linked to the LDL receptor structural gene and which can control LDL receptor expression.


1982 ◽  
Vol 2 (5) ◽  
pp. 535-544
Author(s):  
B Ray ◽  
H C Wu

Chinese hamster ovary mutants simultaneously resistant to ricin and Pseudomonas toxin have been isolated. Two mutant cell lines (4-10 and 11-2) were found to retain normal levels of binding of both ricin and Pseudomonas toxin. They were defective in the internalization of [125I]ricin into the mutant cells, as measured by both a biochemical assay for ricin internalization and electron microscopic autoradiographic studies. Although pretreatment of Chinese hamster ovary cells with a Na+/K+ ionophore, nigericin, resulted in an enhancement of the cytotoxicities of ricin and Pseudomonas toxin in the wild-type Chinese hamster ovary cells, preculture of the mutant cells did not alter the susceptibility of the mutant cells to either toxin. These results provide further evidence that there is a common step in the internalization process for ricin and Pseudomonas toxin.


1987 ◽  
Vol 105 (6) ◽  
pp. 2713-2721 ◽  
Author(s):  
D J Yamashiro ◽  
F R Maxfield

Acidification of endocytic compartments is necessary for the proper sorting and processing of many ligands and their receptors. Robbins and co-workers have obtained Chinese hamster ovary (CHO) cell mutants that are pleiotropically defective in endocytosis and deficient in ATP-dependent acidification of endosomes isolated by density centrifugation (Robbins, A. R., S. S. Peng, and J. L. Marshall. 1983. J. Cell Biol. 96:1064-1071; Robbins, A. R., C. Oliver, J. L. Bateman, S. S. Krag, C. J. Galloway, and I. Mellman. 1984. J. Cell Biol. 99:1296-1308). In this and the following paper (Yamashiro, D. J., and F. R. Maxfield. 1987. J. Cell Biol. 105:2723-2733) we describe detailed studies of endosome acidification in the mutant and wild-type CHO cells. Here we describe a new microspectrofluorometry method based on changes in fluorescein fluorescence when all cellular compartments are equilibrated to the same pH value. Using this method we measured the pH of endocytic compartments during the first minutes of endocytosis. We found in wild-type CHO cells that after 3 min, fluorescein-labeled dextran (F-Dex) was in endosomes having an average pH of 6.3. By 10 min, both F-Dex and fluorescein-labeled alpha 2-macroglobulin (F-alpha 2M) had reached acidic endosomes having an average pH of 6.0 or below. In contrast, endosome acidification in the CHO mutants DTG 1-5-4 and DTF 1-5-1 was markedly slowed. The average endosomal pH after 5 min was 6.7 in both mutant cell lines. At least 15 min was required for F-Dex and F-alpha 2M to reach an average pH of 6.0 in DTG 1-5-4. Acidification of early endocytic compartments is defective in the CHO mutants DTG 1-5-4 and DTF 1-5-1, but pH regulation of later compartments on both the recycling pathway and lysosomal pathway is nearly normal. The properties of the mutant cells suggest that proper functioning of pH regulatory mechanisms in early endocytic compartments is critical for many pH-mediated processes of endocytosis.


1981 ◽  
Vol 1 (12) ◽  
pp. 1069-1076 ◽  
Author(s):  
R J Kaufman ◽  
R T Schimke

During stepwise increases in the methotrexate concentration in culture medium, we selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). We studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.


Sign in / Sign up

Export Citation Format

Share Document