scholarly journals Sequences required for transcriptional initiation of the Saccharomyces cerevisiae CYC7 genes.

1987 ◽  
Vol 7 (10) ◽  
pp. 3785-3791 ◽  
Author(s):  
A M Healy ◽  
T L Helser ◽  
R S Zitomer

A series of BAL 31 deletions were constructed in the upstream region of the Saccharomyces cerevisiae CYC7 gene to determine sequences required for transcriptional initiation. These deletions identified the TATA box as an alternating A-T sequence at -160 and the initiation sequences as well as the spatial relationship between them. The TATA box was necessary for wild-type levels of expression of the CYC7 gene. Decreasing the distance between the TATA sequence and the initiation site did not alter gene expression, but the site of transcription was shifted 3'-ward. In most cases, transcription initiated at a number of sites, the 5'-most of which was the first suitable site greater than 45 base pairs 3' of the TATA sequence, suggesting a spatial relationship between these sequences. Consensus sequences previously proposed for initiation sites were evaluated with respect to the start sites identified in this study as well as the start sites of other yeast genes.

1987 ◽  
Vol 7 (10) ◽  
pp. 3785-3791
Author(s):  
A M Healy ◽  
T L Helser ◽  
R S Zitomer

A series of BAL 31 deletions were constructed in the upstream region of the Saccharomyces cerevisiae CYC7 gene to determine sequences required for transcriptional initiation. These deletions identified the TATA box as an alternating A-T sequence at -160 and the initiation sequences as well as the spatial relationship between them. The TATA box was necessary for wild-type levels of expression of the CYC7 gene. Decreasing the distance between the TATA sequence and the initiation site did not alter gene expression, but the site of transcription was shifted 3'-ward. In most cases, transcription initiated at a number of sites, the 5'-most of which was the first suitable site greater than 45 base pairs 3' of the TATA sequence, suggesting a spatial relationship between these sequences. Consensus sequences previously proposed for initiation sites were evaluated with respect to the start sites identified in this study as well as the start sites of other yeast genes.


1986 ◽  
Vol 6 (9) ◽  
pp. 3253-3261
Author(s):  
D D Chang ◽  
D A Clayton

Using deletion mutagenesis we localized the promoter for the light strand of mouse mitochondrial DNA to a 97-base-pair region, from -88 to +9 nucleotides of the transcriptional initiation site. Within this region the light-strand promoter could be dissected into at least three different functional domains. The specificity region, a maximum of 19 base pairs between -10 and +9 of the transcriptional initiation site, was essential and sufficient for accurate transcriptional initiation. A second region, extending to -29 nucleotides from the initiation site, facilitated the formation of a preinitiation complex between the template DNA and factor(s) present in the mitochondrial RNA polymerase fraction and was required for efficient transcription. A third, ill-defined upstream region, which extended up to -88 nucleotides from the initiation site, appeared to influence template transcriptional efficiencies in competition assays. Without the specificity domain, the upstream regions were incapable of supporting any transcription. The presence of multiple upstream domains was confirmed by disrupting nucleotide sequences in the upstream region by using linker insertion and linker replacement techniques.


1986 ◽  
Vol 6 (9) ◽  
pp. 3253-3261 ◽  
Author(s):  
D D Chang ◽  
D A Clayton

Using deletion mutagenesis we localized the promoter for the light strand of mouse mitochondrial DNA to a 97-base-pair region, from -88 to +9 nucleotides of the transcriptional initiation site. Within this region the light-strand promoter could be dissected into at least three different functional domains. The specificity region, a maximum of 19 base pairs between -10 and +9 of the transcriptional initiation site, was essential and sufficient for accurate transcriptional initiation. A second region, extending to -29 nucleotides from the initiation site, facilitated the formation of a preinitiation complex between the template DNA and factor(s) present in the mitochondrial RNA polymerase fraction and was required for efficient transcription. A third, ill-defined upstream region, which extended up to -88 nucleotides from the initiation site, appeared to influence template transcriptional efficiencies in competition assays. Without the specificity domain, the upstream regions were incapable of supporting any transcription. The presence of multiple upstream domains was confirmed by disrupting nucleotide sequences in the upstream region by using linker insertion and linker replacement techniques.


1990 ◽  
Vol 10 (7) ◽  
pp. 3635-3645
Author(s):  
D E Ayer ◽  
W S Dynan

Recent work has shown that many promoters recognized by eucaryotic RNA polymerase II contain essential sequences located downstream of the transcriptional initiation site. We show here that the activity of a promoter element centered 28 base pairs downstream of the simian virus 40 major late initiation site appears to be mediated by a DNA-binding protein, which was isolated by affinity chromatography from HeLa cell nuclear extracts. In the absence of the other components of the transcriptional machinery, the protein bound specifically but weakly to its recognition sequence, with a Kd of approximately 10(-8) M. Analysis of kinetic data showed that mutation of the downstream element decreased the number of functional preinitiation complexes assembled at the promoter without significantly altering the time required for half the complexes to assemble. This suggests that in the absence of the downstream activating protein, preinitiation complexes are at least partially assembled but are not transcriptionally competent.


1987 ◽  
Vol 7 (3) ◽  
pp. 1233-1241
Author(s):  
M Irani ◽  
W E Taylor ◽  
E T Young

Transcription of the ADH2 gene in the yeast Saccharomyces cerevisiae was inhibited by excess copies of its own promoter region. This competition effect was promoter specific and required the upstream activation sequence of ADH2 as well as sequences 3' to the TATA box. Introducing excess copies of ADR1, an ADH2-specific regulatory gene, did not alleviate the competition that was observed in these circumstances during both constitutive and derepressed ADH2 expression. Excess copies of the upstream region did not release ADH2 from glucose repression, consistent with the view that ADH2 is regulated by positive trans-acting factors.


1988 ◽  
Vol 8 (8) ◽  
pp. 3332-3337 ◽  
Author(s):  
Y Choffat ◽  
B Suter ◽  
R Behra ◽  
E Kubli

In Saccharomyces cerevisiae, pseudouridine formation in the middle position of the tRNA(Tyr) anticodon (psi 35) is dependent on the presence of the intron in the tRNA(Tyr) gene (Johnson and Abelson, Nature 302:681-687, 1983). Drosophila melanogaster tRNA(Tyr) genes contain introns of three size classes: 20 or 21 base pairs (bp) (six genes), 48 bp (one gene), and 113 bp (one gene). As in yeast, removal of the intron led to loss of psi 35 in the anticodon when transcription was assayed in Xenopus laevis oocytes. All Drosophila intron sizes supported psi 35 formation. The same results were obtained with the homologous X. laevis tRNA(Tyr) genes containing introns of 12 or 13 bp or with a deleted intron. The introns of yeast (Nishikura and DeRobertis, J. Mol. Biol. 145:405-420, 1981), D. melanogaster, and X. laevis tRNA(Tyr) wild-type genes, while they all supported psi 35 synthesis, did not share any consensus sequences. As discussed, these results, taken together, suggest that for appropriate function the psi 35 enzyme in the X. laevis oocyte needs the presence of an unqualified intron in the tRNA gene and a tRNA(Tyr)-like structure in the unprocessed tRNA precursor.


2000 ◽  
Vol 74 (17) ◽  
pp. 8176-8182 ◽  
Author(s):  
Ramón García-Escudero ◽  
Eladio Viñuela

ABSTRACT A number of mutations, including deletions, linker scan substitutions, and point mutations, were performed in the promoter of the late African swine fever virus (ASFV) gene coding for the capsid protein p72. The consequences of the mutations in terms of promoter activity were analyzed by luciferase assays using plasmids transfected into infected cells. The results showed that the promoter function is contained between nucleotides −36 and +5 relative to the transcription initiation site. Moreover, two major essential regions for promoter activity, centered at positions −13 and +3, were located along the 41-bp sequence, the latter mapping in the transcription start site. Sequence alignment with other ASFV late promoters showed homology in the region of transcriptional initiation, where the presence of the sequence TATA was observed in most of the promoters. Substitution of these four residues in three other late viral promoters strongly reduced their respective activities. These results show thatcis-acting control elements of ASFV p72 gene transcription are restricted to a short sequence of about 40 bp and suggest that transcription of late genes is initiated around a TATA sequence that would function as an initiator element.


1986 ◽  
Vol 6 (12) ◽  
pp. 4251-4258 ◽  
Author(s):  
S Kim ◽  
J Mellor ◽  
A J Kingsman ◽  
S M Kingsman

The TRP1 promoter generates two groups of mRNAs, transcript I and transcript II. The difference in size between the largest and smallest mRNAs is about 200 base pairs. A series of one-sided and internal deletions were constructed in vitro throughout the TRP1 promoter, and the effect of each deletion on transcription was assessed by Northern blotting. We showed that 395 base pairs of the TRP1 promoter were sufficient for the normal transcription of all RNAs and that the promoter contained two control domains. The control domain for transcript I consisted of one positive element and one negative element, while the control domain for transcript II contained two positive elements. The negative element, mapped between -293 and -318, expression of transcript I. Two regions of transcript I. Two regions (-280 to -236 and -235 to -209) were required for accurate initiation of transcript I. Each region contained sequences homologous to known consensus sequences of the TATA box.


1986 ◽  
Vol 6 (2) ◽  
pp. 663-673 ◽  
Author(s):  
E Hoffman ◽  
V Corces

The transcriptional regulation of the Drosophila melanogaster hsp27 (also called hsp28) gene was studied by introducing altered genes into the germ line by P element-mediated transformation. DNA sequences upstream of the gene were defined with respect to their effect on steroid hormone-induced and heat-induced transcription. These two types of control were found to be separable; the sequences responsible for 80% of heat-induced expression were located more than 1.1 kilobases upstream of the RNA initiation site, while the sequences responsible for the majority of ecdysterone induction were positioned downstream of the site at -227 base pairs. We have determined the DNA sequence of the intergenic region separating hsp23 and hsp27 and have located putative heat shock and ecdysterone consensus sequences. Our results indicate that the heat shock promoter of the hsp27 gene is organized quite differently from that of hsp70.


1986 ◽  
Vol 6 (1) ◽  
pp. 246-256 ◽  
Author(s):  
M Tajima ◽  
Y Nogi ◽  
T Fukasawa

We constructed a series of deletions in the 5' noncoding region of the Saccharomyces cerevisiae GAL7 gene, fused them to the Escherichia coli gene lacZ, and introduced them into yeasts by using a multicopy vector. We then studied the effect of the deletions on beta-galactosidase synthesis directed by the gene fusions in media with various carbon sources. This analysis identified a TATA box and two upstream activating sequences as necessary elements for galactose-controlled GAL7 transcription. Two upstream activating sequences exhibiting 71% homology with each other were located 255 and 168 base pairs, respectively, upstream of the GAL7 transcription start point. Each sequence consists of 21 base pairs, displaying an approximate rotational symmetry with a core consensus sequence of GAA--AGCTGCTTC--CGCG. At least one of the two sequences is required for galactose induction and also for glucose repression of the GAL7'-lac'Z gene. Analysis with host regulatory mutants delta gal14 and delta gal180 suggests that these sequences are the site at which the GAL4 product exerts its action to activate the GAL7 gene. We also observed that a deletion lacking both upstream activation sequences allowed the gene fusion to be expressed in the absence of galactose at about 10% of the fully induced level of the intact fusion. This constitutive expression depended on the presence of the TATA box of GAL7 in cis but not on a functional GAL4 gene. The level of the uncontrolled expression was decreased by increasing the distance between the TATA box and the pBR322 sequence in the vector plasmid.


Sign in / Sign up

Export Citation Format

Share Document