scholarly journals c-erbA encodes multiple proteins in chicken erythroid cells.

1988 ◽  
Vol 8 (10) ◽  
pp. 4155-4161 ◽  
Author(s):  
J Bigler ◽  
R N Eisenman

To identify and characterize the proteins encoded by the erbA proto-oncogene, we expressed the C-terminal region of v-erbA in a bacterial trpE expression vector system and used the fusion protein to prepare antiserum. The anti-trp-erbA serum recognized the P75gag-erbA protein encoded by avian erythroblastosis virus and specifically precipitated six highly related proteins ranging in size from 27 to 46 kilodaltons from chicken embryonic erythroid cells. In vitro translation of a chicken erbA cDNA produced essentially the same pattern of proteins. Partial proteolytic maps and antigenicity and kinetic analyses of the in vivo and in vitro proteins indicated that they are related and that the multiple bands are likely to arise from internal initiations within c-erbA to generate a nested set of proteins. All of the c-erbA proteins are predominantly associated with chicken erythroblast nuclei. However, Nonidet P-40 treatment resulted in extraction of the three smaller proteins, whereas the larger proteins were retained. During differentiation of erythroid cells in chicken embryos, we found maximal levels of c-erbA protein synthesis at days 7 to 8 of embryogenesis. By contrast, c-erbA mRNA levels remained essentially constant from days 5 to 12. Together, our results indicate that posttranscriptional or translational mechanisms are involved in regulation of c-erbA expression and in the complexity of its protein products.

1988 ◽  
Vol 8 (10) ◽  
pp. 4155-4161
Author(s):  
J Bigler ◽  
R N Eisenman

To identify and characterize the proteins encoded by the erbA proto-oncogene, we expressed the C-terminal region of v-erbA in a bacterial trpE expression vector system and used the fusion protein to prepare antiserum. The anti-trp-erbA serum recognized the P75gag-erbA protein encoded by avian erythroblastosis virus and specifically precipitated six highly related proteins ranging in size from 27 to 46 kilodaltons from chicken embryonic erythroid cells. In vitro translation of a chicken erbA cDNA produced essentially the same pattern of proteins. Partial proteolytic maps and antigenicity and kinetic analyses of the in vivo and in vitro proteins indicated that they are related and that the multiple bands are likely to arise from internal initiations within c-erbA to generate a nested set of proteins. All of the c-erbA proteins are predominantly associated with chicken erythroblast nuclei. However, Nonidet P-40 treatment resulted in extraction of the three smaller proteins, whereas the larger proteins were retained. During differentiation of erythroid cells in chicken embryos, we found maximal levels of c-erbA protein synthesis at days 7 to 8 of embryogenesis. By contrast, c-erbA mRNA levels remained essentially constant from days 5 to 12. Together, our results indicate that posttranscriptional or translational mechanisms are involved in regulation of c-erbA expression and in the complexity of its protein products.


1989 ◽  
Vol 2 (1) ◽  
pp. 65-70 ◽  
Author(s):  
H.J. Stewart ◽  
S.H.E. McCann ◽  
A.J. Northrop ◽  
G.E. Lamming ◽  
A.P.F. Flint

ABSTRACT A cloned cDNA has been isolated by probing a sheep blastocyst cDNA library using a synthetic oligonucleotide representing the N-terminal amino acid sequence of the antiluteolytic protein, ovine trophoblast protein-1. Sequence analysis of the cDNA confirms the 70% homology between the antiluteolysin and the interferon-α family of proteins; however, the sequence reported here differs at several points from previously reported amino acid and cDNA sequences for the antiluteolysin. In-vitro translation of day-16 poly(A)+ RNA indicated that antiluteolysin mRNA is a major constituent of total mRNA at this stage of blastocyst development, and Northern blotting confirmed that antiluteolysin mRNA production occurred between days 13 and 22 after oestrus. This is consistent with the stage at which embryonic extracts are antiluteolytic on administration in vivo. These and other data confirm that the ovine trophoblast antiluteolysin is an interferon, and suggest that at least five isoforms of this protein may exist.


1986 ◽  
Vol 6 (7) ◽  
pp. 2347-2353
Author(s):  
J O Berry ◽  
B J Nikolau ◽  
J P Carr ◽  
D F Klessig

The regulation of the genes encoding the large and small subunits of ribulose 1,5-bisphosphate carboxylase was examined in amaranth cotyledons in response to changes in illumination. When dark-grown cotyledons were transferred into light, synthesis of the large- and small-subunit polypeptides was initiated very rapidly, before any increase in the levels of their corresponding mRNAs. Similarly, when light-grown cotyledons were transferred to total darkness, synthesis of the large- and small-subunit proteins was rapidly depressed without changes in mRNA levels for either subunit. In vitro translation or in vivo pulse-chase experiments indicated that these apparent changes in protein synthesis were not due to alterations in the functionality of the mRNAs or to protein turnover, respectively. These results, in combination with our previous studies, suggest that the expression of ribulose 1,5-bisphosphate carboxylase genes can be adjusted rapidly at the translational level and over a longer period through changes in mRNA accumulation.


1986 ◽  
Vol 6 (7) ◽  
pp. 2347-2353 ◽  
Author(s):  
J O Berry ◽  
B J Nikolau ◽  
J P Carr ◽  
D F Klessig

The regulation of the genes encoding the large and small subunits of ribulose 1,5-bisphosphate carboxylase was examined in amaranth cotyledons in response to changes in illumination. When dark-grown cotyledons were transferred into light, synthesis of the large- and small-subunit polypeptides was initiated very rapidly, before any increase in the levels of their corresponding mRNAs. Similarly, when light-grown cotyledons were transferred to total darkness, synthesis of the large- and small-subunit proteins was rapidly depressed without changes in mRNA levels for either subunit. In vitro translation or in vivo pulse-chase experiments indicated that these apparent changes in protein synthesis were not due to alterations in the functionality of the mRNAs or to protein turnover, respectively. These results, in combination with our previous studies, suggest that the expression of ribulose 1,5-bisphosphate carboxylase genes can be adjusted rapidly at the translational level and over a longer period through changes in mRNA accumulation.


Development ◽  
1987 ◽  
Vol 101 (4) ◽  
pp. 847-856
Author(s):  
D.K. Ellis ◽  
A. Carr ◽  
D.I. de Pomerai

Chick embryo neural retinal cells transdifferentiate extensively into lens cells when cultured in Eagle's MEM containing horse and fetal calf sera (FHMEM). Such cultures express elevated levels of pp60c-src-associated tyrosine kinase activity relative to parallel cultures prevented from transdifferentiating by the addition of supplementary glucose (FHGMEM) or replacement of MEM by medium 199 (F199). Northern blotting and in vitro translation studies suggest that c-src mRNA levels are only slightly higher in late transdifferentiating (FHMEM) cultures as compared to parallel blocked (FHGMEM or F199) cultures. By immunocytochemical staining, we show that pp60c-src protein is largely localized in cell groups undergoing conversion into lens (i.e. expressing delta crystallin) in late FHMEM cultures. Initial studies of pp60c-src in chick lens tissues during development indicate that higher kinase activity is found in the epithelial cells relative to mature lens fibres. Thus pp60c-src may be expressed both during the differentiation of lens cells in vivo and during the transdifferentiation of neural retina cells into lens in vitro.


1993 ◽  
Vol 177 (1) ◽  
pp. 223-241
Author(s):  
J. Fischer-Lougheed ◽  
M. O'Shea ◽  
I. Cornish ◽  
C. Losberger ◽  
E. Roulet ◽  
...  

The neurosecretory cells of the locust corpora cardiaca (CC) express two co-localised transcripts which are translated into the two preprohormones required in adipokinetic hormone I (AKH I) and AKH II biosynthesis. At different stages of postembryonic development, the relative amounts of the two transcripts (AKH I mRNA and AKH II mRNA) change in parallel with the relative rates of synthesis of proAKH I and proAKH II. Differential regulation of transcript expression, however, cannot account for the changes in neuropeptide ratios seen during postembryonic development. Comparison of in vivo and in vitro translation shows that protein synthesis in vivo is biased towards the translation of AKH I mRNA by a factor of about 2.6. This factor appears to be constant during postembryonic development and is required to produce the observed developmental changes in neuropeptide ratios. Both transcriptional and translational mechanisms are therefore necessary to alter neuropeptide ratios in the CC. The mechanisms we describe can account for the developmentally changing pattern of peptide expression. We suggest that regulation of neuropeptide ratios indicates that signalling functions can be attributed to the precise configuration of peptide cocktails.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document