scholarly journals Identification of highly conserved regulatory domains and protein-binding sites in the promoters of the rat and human genes encoding the stress-inducible 78-kilodalton glucose-regulated protein.

1988 ◽  
Vol 8 (10) ◽  
pp. 4579-4584 ◽  
Author(s):  
E Resendez ◽  
S K Wooden ◽  
A S Lee

The gene encoding GRP78 has been shown to be constitutively expressed in many cell types and is inducible by the calcium ionophore A23187. To understand the regulation of GRP78 transcription, we analyzed the components that control its basal-level expression. By transfecting deletions into cells, we have identified a 54-nucleotide cis-acting regulatory element important for high basal-level expression and a contiguous 50-nucleotide element for both basal-level expression and A23187 induction. Using DNase footprinting assays with both rat and human GRP78 promoters, we demonstrated that the protein factors present in the HeLa cell nuclear extracts bind to the regulatory regions identified by the deletion studies. This domain contains a palindromic sequence and is highly conserved among GRP genes in Caenorhabditis elegans, chicks, rats, and humans.

1988 ◽  
Vol 8 (10) ◽  
pp. 4579-4584
Author(s):  
E Resendez ◽  
S K Wooden ◽  
A S Lee

The gene encoding GRP78 has been shown to be constitutively expressed in many cell types and is inducible by the calcium ionophore A23187. To understand the regulation of GRP78 transcription, we analyzed the components that control its basal-level expression. By transfecting deletions into cells, we have identified a 54-nucleotide cis-acting regulatory element important for high basal-level expression and a contiguous 50-nucleotide element for both basal-level expression and A23187 induction. Using DNase footprinting assays with both rat and human GRP78 promoters, we demonstrated that the protein factors present in the HeLa cell nuclear extracts bind to the regulatory regions identified by the deletion studies. This domain contains a palindromic sequence and is highly conserved among GRP genes in Caenorhabditis elegans, chicks, rats, and humans.


2009 ◽  
Vol 21 (2) ◽  
pp. 364 ◽  
Author(s):  
Ifigenia Oikonomopoulou ◽  
Hitesh Patel ◽  
Paul F. Watson ◽  
Peter D. Chantler

The mammalian acrosome reaction is a specialised exocytotic event. Although molecular motors are known to be involved in exocytosis in many cell types, their potential involvement in the acrosome reaction has remained unknown. Here, it has been shown that actin is localised within the equatorial segment and in the marginal acrosomal ridge of the heads of unreacted bull spermatozoa. Myosins IIA and IIB are found within the anterior acrosomal margins of virtually all sperm cells and, less prominently, within the equatorial segment. Tubulin was detected in the equatorial segment and around the periphery of the acrosome while kinesin was prominent in the equatorial segment. After induction of the acrosome reaction by means of the calcium ionophore A23187, the number of cells exhibiting actin fluorescence intensity in the anterior acrosomal margin decreased four-fold and those displaying equatorial segment fluorescence decreased 3.5-fold; myosin IIA immunofluorescence decreased in intensity with most spermatozoa losing equatorial staining, whereas there was little change in the distribution or intensity of myosin IIB immunofluorescence, except for a ~20% decrease in the number of cells exhibiting acrosomal staining. Tubulin became largely undetectable within the head and kinesin staining spread rostrally over the main acrosome region. A possible sequence of events that ties in these observations of molecular motor involvement with the known participation of SNARE proteins is provided.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 703-707 ◽  
Author(s):  
J Maclouf ◽  
RC Murphy ◽  
PM Henson

Abstract Cells in the vasculature, including polymorphonuclear leukocytes, platelets, and endothelial cells, have been shown to be jointly involved in the biosynthesis of active lipid mediators derived from arachidonic acid. Stimulation of neutrophils with the calcium ionophore A23187 as a model for cell activation results in production of leukotriene (LT)A4 with subsequent intracellular conversion into LTB4. When platelets or endothelial cells were present in the incubation system, LTC4 was produced from the neutrophil-derived LTA4. Whereas production and release of LTA4 under resting conditions in vivo might be expected to be quite low, under pathologic conditions, LTA4 production could be markedly increased. Therefore, the metabolism of exogenous LTA4 by platelets and endothelial cells was studied at a wide range of LTA4 concentrations. The production of LTC4 during coincubation of neutrophils with platelets was found to be dependent on neutrophil number ranging from 2 x 10(5) to 2 x 10(7) cells/mL. When a fixed number of neutrophils were stimulated with platelets alone or with mixtures of platelets and endothelial cells, LTC4 production was observed to be dependent on both acceptor cell types. These results suggest that mixed cell populations, which are likely to occur in vivo, may be critical determinants of the profile of eicosanoids produced in pathophysiologic circumstances. We suggest that both endothelial cells and platelets, in the presence of neutrophils, contribute large quantities of sulfidopeptide leukotrienes to inflammatory and thrombotic situations. Furthermore, platelets, because of their quantity and reactivity, may play a pivotal role in transcellular biosynthesis of eicosanoids.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 703-707 ◽  
Author(s):  
J Maclouf ◽  
RC Murphy ◽  
PM Henson

Cells in the vasculature, including polymorphonuclear leukocytes, platelets, and endothelial cells, have been shown to be jointly involved in the biosynthesis of active lipid mediators derived from arachidonic acid. Stimulation of neutrophils with the calcium ionophore A23187 as a model for cell activation results in production of leukotriene (LT)A4 with subsequent intracellular conversion into LTB4. When platelets or endothelial cells were present in the incubation system, LTC4 was produced from the neutrophil-derived LTA4. Whereas production and release of LTA4 under resting conditions in vivo might be expected to be quite low, under pathologic conditions, LTA4 production could be markedly increased. Therefore, the metabolism of exogenous LTA4 by platelets and endothelial cells was studied at a wide range of LTA4 concentrations. The production of LTC4 during coincubation of neutrophils with platelets was found to be dependent on neutrophil number ranging from 2 x 10(5) to 2 x 10(7) cells/mL. When a fixed number of neutrophils were stimulated with platelets alone or with mixtures of platelets and endothelial cells, LTC4 production was observed to be dependent on both acceptor cell types. These results suggest that mixed cell populations, which are likely to occur in vivo, may be critical determinants of the profile of eicosanoids produced in pathophysiologic circumstances. We suggest that both endothelial cells and platelets, in the presence of neutrophils, contribute large quantities of sulfidopeptide leukotrienes to inflammatory and thrombotic situations. Furthermore, platelets, because of their quantity and reactivity, may play a pivotal role in transcellular biosynthesis of eicosanoids.


Author(s):  
R. W. Tucker ◽  
N. S. More ◽  
S. Jayaraman

The mechanisms by which polypeptide growth factors Induce DNA synthesis in cultured cells is not understood, but morphological changes Induced by growth factors have been used as clues to Intracellular messengers responsible for growth stimulation. One such morphological change has been the transient disappearance of the primary cilium, a “9 + 0” cilium formed by the perinuclear centriole in interphase cells. Since calcium ionophore A23187 also produced both mitogenesis and ciliary changes, microtubule depolymerization might explain ciliary disappearance monitored by indirect immunofluorescence with anti-tubulin antibody. However, complete resorption and subsequent reformation of the primary cilium occurs at mitosis, and might also account for ciliary disappearance induced by growth factors. To settle this issue, we investigated the ultrastructure of the primary cilium using serial thin-section electron microscopy of quiescent BALB/c 3T3 cells before and after stimulation with serum.


1982 ◽  
Vol 48 (01) ◽  
pp. 049-053 ◽  
Author(s):  
C G Fenn ◽  
J M Littleton

SummaryEthanol at physiologically tolerable concentrations inhibited platelet aggregation in vitro in a relatively specific way, which may be influenced by platelet membrane lipid composition. Aggregation to collagen, calcium ionophore A23187 and thrombin (low doses) were often markedly inhibited by ethanol, adrenaline and ADP responses were little affected, and aggregation to exogenous arachidonic acid was actually potentiated by ethanol. Aggregation to collagen, thrombin and A23187 was inhibited more by ethanol in platelets enriched with saturated fatty acids than in those enriched with unsaturated fats. Platelets enriched with cholesterol showed increased sensitivity to ADP, arachidonate and adrenaline but this increase in cholesterol content did not appear to influence the inhibition by ethanol of platelet responses. The results suggest that ethanol may inhibit aggregation by an effect on membrane fluidity and/or calcium mobilization resulting in decreased activity of a membrane-bound phospholipase.


1990 ◽  
Vol 68 (6) ◽  
pp. 671-676 ◽  
Author(s):  
William Gibb ◽  
Jean-Claude Lavoie

The human amnion may be an important source of prostaglandins involved in the onset of human labor and therefore it is important to define the factors that regulate their formation in this tissue. In the present study we demonstrate that glucocorticoids inhibit prostaglandin production by freshly isolated amnion cells. The inhibitory action of the glucocorticoids, however, changes to a stimulatory action when the cells are maintained in primary culture for a few days. For both inhibition and stimulation, concentrations of 10−8 M dexamethasone or greater were required to give significant effects, and estradiol and progesterone had no effect on the prostaglandin output of the cells. Epidermal growth factor (EGF), which has previously been found to stimulate prostaglandin output by confluent amnion cells, did not alter prostaglandin output of cells initially placed in culture. Furthermore, the stimulatory action of EGF and dexamethasone appeared additive. The calcium ionophore A23187 stimulated prostaglandin output in freshly isolated cells and accentuated the inhibitory effect of dexamethasone. These studies indicate that prostaglandin formation by human amnion during pregnancy could be regulated by glucocorticoids. These steroids are easily available to the amnion by way of cortisone conversion to Cortisol by the maternal decidua. The results also indicate that amnion is capable of responding to glucocorticoids in both a stimulatory and inhibitory fashion and whether one or both actions are of importance in vivo is a question that is as yet unresolved.Key words: prostaglandins, amnion, fetal membranes, glucocorticoids, labor, pregnancy.


1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


Sign in / Sign up

Export Citation Format

Share Document