A direct role for C/EBP and the AP-I-binding site in gene expression linked to adipocyte differentiation

1989 ◽  
Vol 9 (12) ◽  
pp. 5331-5339
Author(s):  
R Herrera ◽  
H S Ro ◽  
G S Robinson ◽  
K G Xanthopoulos ◽  
B M Spiegelman

Adipocyte differentiation is accompanied by the transcriptional activation of many new genes, including the gene encoding adipocyte P2 (aP2), an intracellular lipid-binding protein. Using specific deletions and point mutations, we have shown that at least two distinct sequence elements in the aP2 promoter contribute to the expression of the chloramphenicol acetyltransferase gene in chimeric constructions transfected into adipose cells. An AP-I site at -120, shown earlier to bind Jun- and Fos-like proteins, serves as a positive regulator of chloramphenicol acetyltransferase gene expression in adipocytes but is specifically silenced by adjacent upstream sequences in preadipocytes. Sequences upstream of the AP-I site at -140 (termed AE-1) can function as an enhancer in both cell types when linked to a viral promoter but can stimulate expression only in fat cells in the intact aP2 promoter. The AE-1 sequence binds an adipocyte protein identical or very closely related to an enhancer-binding protein (C/EBP) that has been previously implicated in the regulation of several liver-specific genes. A functional role for C/EBP in the regulation of the aP2 gene is indicated by the facts that C/EBP mRNA is induced during adipocyte differentiation and the aP2 promoter is transactivated by cotransfection of a C/EBP expression vector into preadipose cells. These results indicate that sequences that bind C/EBP and the Fos-Jun complex play major roles in the expression of the aP2 gene during adipocyte differentiation and demonstrate that C/EBP can directly regulate cellular gene expression.

1989 ◽  
Vol 9 (12) ◽  
pp. 5331-5339 ◽  
Author(s):  
R Herrera ◽  
H S Ro ◽  
G S Robinson ◽  
K G Xanthopoulos ◽  
B M Spiegelman

Adipocyte differentiation is accompanied by the transcriptional activation of many new genes, including the gene encoding adipocyte P2 (aP2), an intracellular lipid-binding protein. Using specific deletions and point mutations, we have shown that at least two distinct sequence elements in the aP2 promoter contribute to the expression of the chloramphenicol acetyltransferase gene in chimeric constructions transfected into adipose cells. An AP-I site at -120, shown earlier to bind Jun- and Fos-like proteins, serves as a positive regulator of chloramphenicol acetyltransferase gene expression in adipocytes but is specifically silenced by adjacent upstream sequences in preadipocytes. Sequences upstream of the AP-I site at -140 (termed AE-1) can function as an enhancer in both cell types when linked to a viral promoter but can stimulate expression only in fat cells in the intact aP2 promoter. The AE-1 sequence binds an adipocyte protein identical or very closely related to an enhancer-binding protein (C/EBP) that has been previously implicated in the regulation of several liver-specific genes. A functional role for C/EBP in the regulation of the aP2 gene is indicated by the facts that C/EBP mRNA is induced during adipocyte differentiation and the aP2 promoter is transactivated by cotransfection of a C/EBP expression vector into preadipose cells. These results indicate that sequences that bind C/EBP and the Fos-Jun complex play major roles in the expression of the aP2 gene during adipocyte differentiation and demonstrate that C/EBP can directly regulate cellular gene expression.


2000 ◽  
Vol 20 (5) ◽  
pp. 1616-1625 ◽  
Author(s):  
Yang Chen ◽  
R. H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) serves as a transcriptional coactivator in multiple signal transduction pathways. The Drosophilahomologue of CBP, dCBP, interacts with the transcription factors Cubitus interruptus (CI), MAD, and Dorsal (DL) and functions as a coactivator in several signaling pathways during Drosophiladevelopment, including the hedgehog (hh),decapentaplegic (dpp), and Tollpathways. Although dCBP is required for the expression of thehh target genes, wingless (wg) andpatched (ptc) in vivo, and potentiatesci-mediated transcriptional activation in vitro, it is not known that ci absolutely requires dCBP for its activity. We used a yeast genetic screen to identify several ci point mutations that disrupt CI-dCBP interactions. These mutant proteins are unable to transactivate a reporter gene regulated by cibinding sites and have a lower dCBP-stimulated activity than wild-type CI. When expressed exogenously in embryos, the CI point mutants cannot activate endogenous wg expression. Furthermore, a CI mutant protein that lacks the entire dCBP interaction domain functions as a negative competitor for wild-type CI activity, and the expression of dCBP antisense RNAs can suppress CI transactivation in Kc cells. Taken together, our data suggest that dCBP function is necessary forci-mediated transactivation of wg duringDrosophila embryogenesis.


2004 ◽  
Vol 286 (6) ◽  
pp. E941-E949 ◽  
Author(s):  
Jussi Sutinen ◽  
Katja Kannisto ◽  
Elena Korsheninnikova ◽  
Rachel M. Fisher ◽  
Ewa Ehrenborg ◽  
...  

Highly active antiretroviral therapy (HAART) has improved the prognosis of human immunodeficiency virus (HIV)-infected patients but is associated with severe adverse events, such as lipodystrophy and insulin resistance. Rosiglitazone did not increase subcutaneous fat in patients with HAART-associated lipodystrophy (HAL) in a randomized, double-blind, placebo-controlled trial, although it attenuated insulin resistance and decreased liver fat content. The aim of this study was to examine effects of rosiglitazone on gene expression in subcutaneous adipose tissue in 30 patients with HAL. The mRNA concentrations in subcutaneous adipose tissue were measured using real-time PCR. Twenty-four-week treatment with rosiglitazone (8 mg/day) compared with placebo significantly increased the expression of adiponectin, peroxisome proliferator-activated receptor-γ (PPARγ), and PPARγ coactivator 1 and decreased IL-6 expression. Expression of other genes involved in lipogenesis, fatty acid metabolism, or glucose transport, such as acyl-CoA synthase, adipocyte lipid-binding protein, CD45, fatty acid transport protein-1 and -4, GLUT1, GLUT4, keratinocyte lipid-binding protein, lipoprotein lipase, PPARδ, and sterol regulatory element-binding protein-1c, remained unchanged. Rosiglitazone also significantly increased serum adiponectin concentration. The change in serum adiponectin concentration was inversely correlated with the change in fasting serum insulin concentration and liver fat content. In conclusion, rosiglitazone induced significant changes in gene expression in subcutaneous adipose tissue and ameliorated insulin resistance in patients with HAL. Increased expression of adiponectin might have mediated most of the favorable insulin-sensitizing effects of rosiglitazone in these patients.


1990 ◽  
Vol 10 (3) ◽  
pp. 887-897 ◽  
Author(s):  
A R Buchman ◽  
R D Kornberg

ABFI (ARS-binding protein I) is a yeast protein that binds specific DNA sequences associated with several autonomously replicating sequences (ARSs). ABFI also binds sequences located in promoter regions of some yeast genes, including DED1, an essential gene of unknown function that is transcribed constitutively at a high level. ABFI was purified by specific binding to the DED1 upstream activating sequence (UAS) and was found to recognize related sequences at several other promoters, at an ARS (ARS1), and at a transcriptional silencer (HMR E). All ABFI-binding sites, regardless of origin, provided weak UAS function in vivo when examined in test plasmids. UAS function was abolished by point mutations that reduced ABFI binding in vitro. Analysis of the DED1 promoter showed that two ABFI-binding sites combine synergistically with an adjacent T-rich sequence to form a strong constitutive activator. The DED1 T-rich element acted synergistically with all other ABFI-binding sites and with binding sites for other multifunctional yeast activators. An examination of the properties of sequences surrounding ARS1 left open the possibility that ABFI enhances the initiation of DNA replication at ARS1 by transcriptional activation.


2011 ◽  
Vol 89 (6) ◽  
pp. 578-584 ◽  
Author(s):  
Aurelia Sima ◽  
Daniel-Constantin Manolescu ◽  
Pangala Bhat

Vitamin A and its analogs (retinoids) regulate adipocyte differentiation. Recent investigations have demonstrated a relationship among retinoids, retinoid-binding-protein 4 (RBP4) synthesized in adipose tissues, and insulin-resistance status. In this study, we measured retinoid levels and analyzed the expression of retinoid homeostatic genes associated with retinol uptake, esterification, oxidation, and catabolism in subcutaneous (Sc) and visceral (Vis) mouse fat tissues. Both Sc and Vis depots were found to contain similar levels of all-trans retinol. A metabolite of retinol with characteristic ultraviolet absorption maxima for 9-cis retinol was observed in these 2 adipose depots, and its level was 2-fold higher in Sc than in Vis tissues. Vis adipose tissue expressed significantly higher levels of RBP4, CRBP1 (intracellular retinol-binding protein 1), RDH10 (retinol dehydrogenase), as well as CYP26A1 and B1 (retinoic acid (RA) hydroxylases). No differences in STRA6 (RBP4 receptor), LRAT (retinol esterification), CRABP1 and 2 (intracellular RA-binding proteins), and RALDH1 (retinal dehydrogenase) mRNA expressions were discerned in both fat depots. RALDH1 was identified as the only RALDH expressed in both Sc and Vis adipose tissues. These results indicate that Vis is more actively involved in retinoid metabolism than Sc adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document