scholarly journals Near-Complete Genome Sequence of Ralstonia solanacearum T523, a Phylotype I Tomato Phytopathogen Isolated from the Philippines

2018 ◽  
Vol 7 (12) ◽  
Author(s):  
Andrew D. Montecillo ◽  
Asuncion K. Raymundo ◽  
Irene A. Papa ◽  
Genevieve Mae B. Aquino ◽  
Arian J. Jacildo ◽  
...  

Ralstonia solanacearum strain T523 is the major phytopathogen causing tomato bacterial wilt in the Philippines. Here, we report the complete chromosome and draft megaplasmid genomes with predicted gene inventories supporting rhizosphere processes, extensive plant virulence effectors, and the production of bioactive signaling metabolites, such as ralstonin, micacocidin, and homoserine lactone.

2017 ◽  
Vol 5 (14) ◽  
Author(s):  
Deju Chen ◽  
Bo Liu ◽  
Yujing Zhu ◽  
Jieping Wang ◽  
Zheng Chen ◽  
...  

ABSTRACT An avirulent strain of Ralstonia solanacearum FJAT-1458 was isolated from a living tomato. Here, we report the complete R. solanacearum FJAT-1458 genome sequence of 6,059,899 bp and 5,241 genes. This bacterial strain is a potential candidate as a biocontrol agent in the form of a plant vaccine for bacterial wilt.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Aundy Kumar ◽  
Vibhuti Munjal ◽  
Neelam Sheoran ◽  
Thekkan Puthiyaveedu Prameela ◽  
Rajamma Suseelabhai ◽  
...  

ABSTRACT The genome of Ralstonia solanacearum CaRs_Mep, a race 4/biovar 3/phylotype I bacterium causing wilt in small cardamom and other Zingiberaceae plants, was sequenced. Analysis of the 5.7-Mb genome sequence will aid in better understanding of the genetic determinants of host range, host jump, survival, pathogenicity, and virulence of race 4 of R. solanacearum.


2017 ◽  
Vol 124 (5) ◽  
pp. 467-472 ◽  
Author(s):  
Kamal A. M. Abo-Elyousr ◽  
Mohamed E. A. Seleim ◽  
Rafeek M. El-Sharkawy ◽  
Hadel M. M. Khalil Bagy

Author(s):  
Narasimhamurthy Konappa ◽  
Soumya Krishnamurthy ◽  
Chandra Nayaka Siddaiah ◽  
Niranjana Siddapura Ramachandrappa ◽  
Srinivas Chowdappa

Author(s):  
Bitang Bamazi ◽  
Agnassim Banito ◽  
K. D. Ayisah ◽  
Rachidatou Sikirou ◽  
Mathews Paret ◽  
...  

Tomato (Solanum lycopersicum L.) is one of the most important vegetables in Togo. Unfortunately, tomatoes are susceptible to many diseases, among which bacterial wilt caused by Ralstonia solanacearum causes major yield losses. In this study, incidence of bacterial wilt and its distribution was evaluated in the central region of Togo, the major tomato producing area in the country. Overall, 16 localities were surveyed in four prefectures. In each locality, three fields were visited, and the incidence of the disease was recorded, and diseased samples were collected for laboratory investigation. The results showed that bacterial wilt occurred in all the fields visited, indicating a field incidence of 100%, whereas the plant incidence ranged from 10.00±00% to 43.33±3.33%, with an average of 20.94±1.77%. The antibody based Immunostrip test was positive for R. solanacearum in 100% of the visited fields. From 144 samples collected from fields, 45 R. solanacearum isolates were isolated on Modified SMSA media. This survey results show that tomato bacterial wilt is a real threat to tomato production in the central region of Togo.


2020 ◽  
Vol 9 (13) ◽  
Author(s):  
Ayaka Hosoe ◽  
Toshikazu Suenaga ◽  
Takumi Sugi ◽  
Taro Iizumi ◽  
Naohiro Nagai ◽  
...  

We report the complete genome sequence of Pseudomonas putida strain TS312, in the class of Gammaproteobacteria. The strain, isolated from a paper mill, harbors the hdtS gene, encoding N-acyl-homoserine lactone synthase. Deciphering the genome contributes to revealing the mechanisms of quorum sensing and associated biofilm formation in engineered systems.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1407
Author(s):  
Y. S. Kim ◽  
S. R. Lim ◽  
J.-W. Kim ◽  
H.-J. Lee ◽  
D. H. Park

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 969-969
Author(s):  
T. L. Klass ◽  
M. M. Hayes ◽  
K. H. Seng ◽  
C. An ◽  
F. Rotondo ◽  
...  

Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 157 ◽  
Author(s):  
Namisy ◽  
Chen ◽  
Prohens ◽  
Metwally ◽  
Elmahrouk ◽  
...  

Bacterial wilt, caused by Ralstonia solanacearum, is highly diverse and the identification of new sources of resistance for the incorporation of multiple and complementary resistance genes in the same cultivar is the best strategy for durable and stable resistance. The objective of this study was to screen seven accessions of cultivated eggplant (Solanum melongena L.) and 40 accessions from 12 wild relatives for resistance to two virulent R. solanacearum strains (Pss97 and Pss2016; phylotype I, race 1, biovar 3). The resistant or moderately resistant accessions were further evaluated with Pss97 in a second trial under high temperatures (and also with Pss2016 for S. anguivi accession VI050346). The resistant control EG203 was resistant to Pss97, but only moderately resistant to Pss2016. One accession of S. sisymbriifolium (SIS1) and two accessions of S. torvum (TOR2 and TOR3) were resistant or moderately resistant to Pss97 in both trials. Solanum anguivi VI050346, S. incanum accession MM577, and S. sisymbriifolium (SIS1 and SIS2) were resistant to Pss2016 in the first trial. However, S. anguivi VI050346 was susceptible in the second trial. These results are important for breeding resistant rootstocks and cultivars that can be used to manage this endemic disease.


2019 ◽  
Vol 109 (11) ◽  
pp. 1922-1931 ◽  
Author(s):  
Abdulwahab Abdurahman ◽  
Monica L. Parker ◽  
Jan Kreuze ◽  
John G. Elphinstone ◽  
Paul C. Struik ◽  
...  

Bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is a serious threat to potato production in Uganda. However, little is known about the extent of the disease and the type of the pathogen strains involved. A nationwide survey was conducted to study BW prevalence and incidence in potato, and potato tuber and stem samples of potential alternative hosts were collected for pathogen isolation. DNA was extracted from pure cultures for genetic diversity studies. The pathogen was phylotyped by multiplex PCR; then, a subset of isolates was typed at sequevar level. Isolates of the same sequevar were then haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. BW prevalence and incidence in potato farms were 81.4 and 1.7%, respectively. Three RSSC phylotypes were identified, with the majority of the strains belonging to Phylotype II (80%) followed by Phylotype I (18.5%) and III (1.5%). Phylotype I strains belonged to Sequevar 31, and Phylotype II strains belonged to Sequevar 1. Potato-associated Phylotype II Sequevar 1 strains were more diverse (27 TRST haplotypes) than nonpotato Phylotype I (5 TRST haplotypes). Mapping of TRST haplotypes revealed that three TRST haplotypes of Phylotype II Sequevar 1 strains play an important epidemiological role in BW of potato in Uganda being disseminated via latently infected seed. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Sign in / Sign up

Export Citation Format

Share Document